KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
Department of Mathematics & Statistics

Math 605 Asymptotic Expansions and Perturbation Methods

Mid Term Exam Term 122

Time Allowed 2 Hours

Name ________________ ID # ______

<table>
<thead>
<tr>
<th>Q #</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/ 8</td>
</tr>
<tr>
<td>2</td>
<td>/ 10</td>
</tr>
<tr>
<td>3</td>
<td>/ 10</td>
</tr>
<tr>
<td>4</td>
<td>/12</td>
</tr>
<tr>
<td>Total</td>
<td>/ 40</td>
</tr>
</tbody>
</table>

Important Note

Write clearly and show all work.

Instructor: F. D. Zaman
Q 1) Define the following notions for \(z \to \infty \)

(i) Order relation \(O \)

(ii) Order relation \(o \)

(iii) \(f \) asymptotic to \(g \)

(iv) Asymptotic sequence
(b) Consider \(f(z) = 2z + z \cos z \). Find \(g(z) \) such that \(f(z) = O(g(z)), \ z \to \infty \)

When \(f(z) \) is purely imaginary and when it is purely real.

(c) Find asymptotic representation of \(f(z) = \frac{1}{z-1}, \ z \to \infty \) in two different ways.
Q2) Consider $E_i(x) = \int_x^\infty \frac{e^{-t}}{t} dt$. Obtain an asymptotic representation of $E_i(x)$ for large x. Show that this is indeed an accurate approximation for large x. Also show that the series representation is however divergent.
Q3) Use the Laplace method (not the formula) to obtain an asymptotic approximation of the integral

\[f(x) = \int_{-\infty}^{\infty} \exp(-x \cosh t) dt, \quad x \to \infty. \]
Q4) Find asymptotic approximation for

(a) \[\int_0^\infty \cos \lambda (t^3 - t) dt, \quad \lambda \to \infty \]
Q 4) (b) \(\int_{0}^{\pi} \cos(x \sin t - nt) dt \), \(x \to \infty \).