Math 550 – Linear Algebra (Term 131)

Final Exam

Notes:
- Math Students: Solve 6 problems (out of 7).
- Non-Math Students: Solve 5 problems (out of 7).
- Duration = 3 hours.
- Each problem is worth 20 points.

(1) Let T be a linear operator on \mathbb{R}^3 which is represented in the standard ordered basis by the matrix
\[
\begin{bmatrix}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -1
\end{bmatrix}.
\]
(a) Prove that T has no cyclic vector.
(b) What is the T-cyclic subspace generated by the vector $\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$.

(2) Let n be an integer ≥ 2 and let N be an $n \times n$ matrix over the field F such that $N^n = 0$ but $N^{n-1} \neq 0$. Prove that N has no square root (i.e., there is no $n \times n$ matrix A such that $A^2 = N$).

(3) Let A be an $n \times n$ matrix with real entries such that $A^2 + I = 0$.
(a) Prove n is even.
Let $n = 6$.
(b) Give the rational form of A.
(c) Describe explicitly the cyclic decomposition.

(4) Give all possible Jordan forms for linear operator T with minimal polynomial $x^2(x - 1)^2$ and characteristic polynomial $x^4(x - 1)^4$.
(5) Let V be the vector space of the polynomials over \mathbb{R} of degree ≤ 3, with the inner product $(f | g) = \int_0^1 f(x) g(x) dx$.

Let t be a real number, find explicitly $g_t \in V$ such that $(f | g_t) = f(t)$ for all f in V. (Hint: Use Theorem 6 of Section 8.3)

(6) Let V be a finite-dimensional inner product space. For each α, β in V, let $T_{\alpha, \beta}$ be the linear operator on V defined by $T_{\alpha, \beta}(\gamma) = (\gamma | \beta)\alpha$. Show that

(a) $T_{\alpha, \beta}^* = T_{\beta, \alpha}$
(b) Trace($T_{\alpha, \beta}$) = $(\alpha | \beta)$
(c) $T_{\alpha, \beta} T_{\gamma, \delta} = T_{\alpha, (\beta | \gamma)\delta}$
(d) Under what conditions is $T_{\alpha, \beta}$ self-adjoint?

(7) Let f and g be bilinear forms on a finite dimensional vector space V. Suppose that g is non-singular.

(a) Show that there exist unique linear operators T_1 and T_2 on V such that:

 $f(\alpha, \beta) = g(T_1 \alpha, \beta) = g(\alpha, T_2 \beta)$ for all α, β.

(Hint: For a bilinear form φ use: $\varphi(\alpha, \beta) = X^TAY$ where $[\varphi] = A, [\alpha] = X, [\beta] = Y$)

(b) Explain why (a) is not true if g is singular.

-------------------------------------- Good Luck ---