Name :
ID : ... Section :

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>
Exercise 1 (12 pts). Is the set of all triples of real numbers \((x, y, z)\) equipped with the standard vector addition but with scalar multiplication defined by \(k(x, y, z) = (k^2x, k^2y, k^2z)\) a vector space (on \(\mathbb{R}\))?
Exercise 2 (12 pts). Determine which of the following subsets of \mathbb{R}^3 are subspaces of \mathbb{R}^3.

(1) All vectors of the form $(a, 0, 0)$.

(2) All vectors of the form $(a, 1, 1)$.

(3) All vectors of the form (a, b, c), where $b = a + c$.

(4) All vectors of the form (a, b, c), where $b = a + c + 1$.
Exercise 3 (12 pts). Let

\[V = \{ (x, y, z) \in \mathbb{R}^3 : 3x - y + 5z = 0 \} . \]

Find a basis of \(V \) and evaluate the dimension of \(V \).
Exercise 4 (12 pts). Use the Wronskian to show that the functions
\[f_1(x) = e^x, f_2(x) = xe^x \text{ and } f_3(x) = x^2 e^x \]
are linearly independent vectors in the space \(C^3(\mathbb{R}) \).
Exercise 5 (14 pts).

(1) Find the transition matrix from $B = (1, x, x^2)$ to the basis $B' = (1, 1 + x, (1 + x)^2)$.

(2) Given any $p(x) = a + bx + cx^2$ in \mathbb{P}_2, find the coordinates of $p(x)$ with respect to the basis $B' = (1, 1 + x, (1 + x)^2)$.
Exercise 6 (12 pts). Let

\[A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 1 & 4 & -3 & 0 \\ 1 & 1 & 1 & 5 \end{pmatrix} \]

Find a basis for the row space \(\text{RS}(A) \) of \(A \), a basis for the column space \(\text{CS}(A) \) of \(A \) and a basis for the nullspace \(\text{NS}(A) \). Verify that \(\text{dim(NS}(A)) = n - \text{rank}(A) \).
Exercise 7 (14 pts). We denote by \mathbf{P}_i the set of all polynomials of degree less than or equal to i. Let $T_1 : \mathbf{P}_1 \rightarrow \mathbf{P}_2$ be the linear transformation defined by $T_1(p(x)) = xp(x)$ and let $T_2 : \mathbf{P}_2 \rightarrow \mathbf{P}_2$ be the linear operator defined by $T_2(p(x)) = p(2x + 1)$. Let $\mathcal{B} = \{1, x\}$ and $\mathcal{B}' = \{1, x, x^2\}$ be the standard bases for \mathbf{P}_1 and \mathbf{P}_2, respectively.

1. Find the matrix of T_1 with respect to the bases \mathcal{B} and \mathcal{B}'.

2. Find the matrix of T_2 with respect to the basis \mathcal{B}'.

3. Find the matrix of $T_2 \circ T_1$ with respect to the bases \mathcal{B} and \mathcal{B}'.
Exercise 8 (12 pts). Let $B = (u_1, u_2, u_3)$ be a basis for a vector space V, and let $T : V \to V$ be the linear transformation with matrix relatively to B:

$$M = \begin{pmatrix} -3 & 4 & 7 \\ 1 & 0 & -2 \\ 0 & 1 & 0 \end{pmatrix}$$

(1) Set $v_1 = u_1$, $v_2 = u_1 + u_2$ and $v_3 = u_1 + u_2 + u_3$. Show that $B' = (v_1, v_2, v_3)$ is a basis of V.

(2) Find the matrix of T with respect to B'.
