(1) Use Green’s theorem to evaluate \(\int_C (x^2 - y^2) \, dx + (2y - x) \, dy \), where \(C \) consists of the boundary of the region in the first quadrant that bounded by \(y = x^2 \) and \(y = x^3 \).

(2) Find a parametrization of the cylinder \((x - 4)^2 + y^2 = 16; 0 \leq z \leq 5\).

(3) Use Stokes theorem to compute the integral \(\iint_S \text{Curl} \, \mathbf{F} \cdot \mathbf{n} \, dS \), where \(\mathbf{F}(x, y, z) = \langle xz, yz, xy \rangle \) and \(S \) is the part of the sphere \(x^2 + y^2 + z^2 = 3 \) that lies inside the cylinder \(x^2 + y^2 = 2 \) and above the xy-plane.

(4) Evaluate \(\iint_S \mathbf{F} \cdot \mathbf{n} \, dS \), where \(\mathbf{F}(x, y, z) = \langle y, x, z \rangle \) and \(S \) is the boundary of the solid region enclosed by \(z = 1 - x^2 - y^2 \) and the plane \(z = 0 \).