Exercise 1 (15 points 5-5-5): Let R and S be subrings of a ring T.
(1) Prove that $R \cap S$ is a subring of T.
(2) Under which condition $R \cup S$ is a subring of T?
(3) Find an example of a ring T with two subrings R and S such that $R \cup S$ is not a subring of T.
Exercise 2 (15 points 5-5-5): Let R and T be commutative rings, $f : R \rightarrow T$ be a ring homomorphism and I an ideal of R.

(1) Prove that if f is onto then $f(I)$ is an ideal of T.

(2) Prove that if J is an ideal of T, then $E = \{ x \in R | f(x) \in J \}$ is an ideal of R.

(3) Find an example of commutative rings R and T, $f : R \rightarrow T$ a ring homomorphism and I an ideal of R such that $f(I)$ is not an ideal of T. (Hint you may use \mathbb{Z}, \mathbb{R} and any ideal of \mathbb{Z}).
Exercise 3 (10 points 5-5): Let R be a commutative ring with unity.

(1) Prove that if R is of characteristic zero, then \mathbb{Z} is isomorphic to a subring of R.

(2) Prove that if R is of prime characteristic p, then $\mathbb{Z}/p\mathbb{Z}$ is isomorphic to a subring of R.
Exercise 4 (10 points 5-5): Let R be a commutative ring and M and N two distinct maximal ideals of R.

(1) Prove that $M + N = R$, and $M \cap N = MN$.

(2) Give an example of a commutative ring with two maximal ideals M and N such that $M + N = R$.
Exercise 5 (15 points, 5-5-5):
(1) Find all ring automorphisms of \mathbb{Z}.
(2) Find all ring automorphisms of \mathbb{Q}.
(3) Is there any ring isomorphism from \mathbb{Z} to \mathbb{Q}, justify?
Exercise 6 (15 points, 5-5-5):
(1) Let \(m \) and \(n \) be two different positive integers. Prove that there is no isomorphism between \(m\mathbb{Z} \) and \(n\mathbb{Z} \).
(2) Prove that the quotient field \(K \) of an integral domain \(R \) is the intersection of all fields containing \(R \).
(3) What is the field of fractions of the ring \(R = \mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\} \).