Exercise 1 (5 points)

By evaluating $\oint_C e^z \, dz$ around the unit circle $|z| = 1$, show that

$$\int_0^{2\pi} e^{\cos \theta} \cos(\theta + \sin \theta) \, d\theta = \int_0^{2\pi} e^{\cos \theta} \sin(\theta + \sin \theta) \, d\theta = 0.$$
Exercise 2 (10 points)

Let \(f(z) = \frac{z^2 + 2z - 5}{(z^2 + 4)(z^2 + 2z + 2)} \).

(a) If \(C_R \) is the circle \(|z| = R\), show that \(\lim_{R \to +\infty} \oint_{C_R} f(z) \, dz = 0 \).

(b) Use the result (a) to deduce that if \(C \) is the circle \(|z - 2| = 5\), then \(\oint_C f(z) \, dz = 0 \).

(c) Compute \(\oint_C f(z) \), where \(C \) is the circle \(|z + 1| = 2\) traversed once the positive sens.
Exercise 3 (7 points)
Let \(C_r \) be the circle \(|z| = r\) traversed once the positive sens. Find for \(r > 0 \) and \(r \neq 1 \), the integral

\[
\oint_{C_r} \frac{z}{(1-z)^2} \, dz.
\]
Exercise 4 (6 points) Show that

\[\int_{-1}^{1} z^i \, dz = \frac{1 + e^{-\pi}}{2} (1 - i), \]

where the integrand denotes the principal branch

\[z^i = \exp(i \log z) \quad (|z| > 0, -\pi < \text{Arg} z < \pi) \]

of \(z^i \) and where the path of integration is any contour from \(z = -1 \) to \(z = 1 \) that, except for its end points, lies above the real axis.
Exercise 5 (10 points)

(a) Let \(f \) be an entire and suppose that \(\Re f(z) \leq M \) for all \(z \). Prove that \(f \) must be a constant function. [Hint: Consider the function \(e^f \).]

(b) Suppose that \(f \) is entire and that \(|f(z)| \leq |z|^3 \) for all sufficiently large values of \(|z| \). Prove that \(f \) must be a polynomial of degree at most 3.
Exercise 6 (5 points)
Let f_n be a sequence of functions analytic in a simply connected domain D and converging uniformly to f in D. Prove that f is analytic in D.
Exercise 7 (7 points)

Find the Laurent series for the function $\frac{z^2}{(z - 1)(z + 2)}$ in each of the following domains

(a) $|z| < 1$
(b) $1 < |z| < 2$
(c) $|z| > 2$.
