Name: ___________________________ ID#: __________________
Instructor: ______________________ Sec #: ______ Serial #: ______

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

<table>
<thead>
<tr>
<th>Question #</th>
<th>Marks</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
Q:1 (16 points) Solve the heat equation

\[\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < \pi, \quad t > 0 \]

subject to the following initial and nonhomogeneous boundary conditions

\[u(x,0) = 4 \text{ for } 0 < x < \pi \text{ and } u(0,t) = 0, \quad u(\pi,t) = 4 \text{ for } t > 0. \]
Q:2 (16 points) Use Laplace transformation method to solve the wave equation

\[
\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = te^{-x}, \quad 0 < x < \infty, \quad t > 0,
\]

with the initial conditions \(u(x, 0) = 0, \ u_t(x, 0) = x,\ \text{for} \ 0 < x < \infty\)

and the boundary conditions \(u(0, t) = 1 - e^{-t}, \ \lim_{x \to \infty} |u(x, t)| \sim x^n,\ \text{for some finite} \ n, \ t > 0.\)
Q:3 (14 points) Find steady-state temperature in a semi infinite plate by solving
\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad 0 < x < \pi, \quad y > 0
\]
subject to the following boundary conditions \(u(0, y) = 0, \ u(\pi, y) = 0 \) for \(y > 0 \)
and \(u(x, 0) = x, \ 0 < x < \pi \). Also solution is bounded at \(y \to \infty \).
Q:4 (20 points) Find the steady-state temperature in a hemisphere of radius 2 by solving
\[
\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\cot \theta}{r^2} \frac{\partial u}{\partial \theta} = 0, \quad 0 < r < 2, \quad 0 < \theta < \frac{\pi}{2}
\]
when the base of the hemisphere is insulated \([u_{\theta}(r, \frac{\pi}{2}) = 0]\)

and \(u(2, \theta) = \sin(\theta) , \quad 0 < \theta < \frac{\pi}{2}\). Find first three nonzero terms of the series solution.

(Hint: \(P_n'(0) = 0\) only for even values of \(n\))
Q:5 (20 points) Find the displacement \(u(x, t) \) in a circular plate of radius 2 by solving
\[
\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} = \frac{\partial^2 u}{\partial t^2}, \quad 0 < r < 2, \quad t > 0
\]
with initial conditions \(u(r, 0) = r^2, \) \(u_t(r, 0) = 0, \) \(0 < r < 2, \)
and the boundary condition \(u(2, t) = 0, \) \(t > 0. \) Solution is bounded at \(r = 0. \)
Q:6 (14 points) Solve the nonhomogeneous linear system using variation of parameters

\[
X' = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} X + \begin{bmatrix} e^t \cos t \\ e^t \sin t \end{bmatrix}, \text{ with } X(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}
\]