I. Let \(F(u) = \int_{-\infty}^{\infty} \text{e}^{-ut} \, dt \), \(u > 0 \). Find the value of \(F(u) \) (in terms of \(u \)). Justify all your steps.

II. Compute the integrals:
 (a) \(\lim_{n \to \infty} \int_{-\infty}^{\infty} \frac{\sin x}{x(1+x^2)} \, dx \)
 (b) \(\lim_{n \to \infty} \int_{0}^{\infty} e^{-x} \text{arctan} \frac{x}{n} \, dx \)

III. (a) Prove that \(\forall \epsilon > 0 \), \(0 \leq 1 - e^{-\epsilon^2} \leq \epsilon \)
 (b) Deduce that \(\forall y > 0 \), \(x \mapsto \frac{1 - e^{-xy}}{x^2} \) is integrable on \([0, \infty)\)
 (c) For \(y > 0 \), let \(F(y) = \int_{0}^{\infty} \frac{1 - e^{-xy}}{x^2} \, dx \). Prove that \(F \) is differentiable on \((0, \infty)\). Compute \(F'(y) \). We recall that \(\int_{0}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}/2 \).
 (d) Deduce \(F(y) \) modulo a constant.
 (e) Compute this constant by looking at \(\lim_{n \to \infty} F(\frac{1}{n}) \).

IV. Let \((E, \Sigma, \mu)\) be a measure space, \(f : E \to [0, \infty) \) a positive measurable function such that \(0 < \int_{E} f \, d\mu < \infty \).
 Find, in terms of \(x \in \mathbb{R}^+ \), \(\lim_{n \to \infty} \int_{E} \ln \left(1 + \left(\frac{f(x)}{n} \right)^x \right) \, d\mu(x) \).
 (Hint: \(1 + t^x \leq (1 + t)^x \), \(t > 0 \), \(x > 1 \)).

V. Let \(f(x) = \int_{0}^{\infty} e^{-t^2} \cos(tx) \, dt \), \(x \in \mathbb{R} \).
 (1) Prove that \(f \in C'(\mathbb{R}) \).
 (2) Prove that \(f \) satisfies \(y' = -\frac{x}{2} y \).
 (3) Deduce an explicit expression of \(f \).