Prove that \(f \) is Borel measurable.

Let \(f \) be a Borel measurable function.

(A) Show that the set \(B = \{ x \in A \mid x = \text{int } x \} \) is also a Borel set.

Let \(A \) be a Borel subset of \(\mathbb{R} \) and \(m(A) = 0 \).

Define \(F = \bigcup_{n=1}^{\infty} F_n \). Show that \(m(F) = 0 \). Let \(\{ F_n \} \) be a sequence of measurable functions.

Prove that \(\chi \) is a discountion function such that \(\chi = \chi^+ - \chi^- \) where \(\chi^+ = \sup_{x \in E} \chi \) and \(\chi^- = \inf_{x \in E} \chi \).

Verify the following definitions:

- \(\chi(x) = \chi^+ - \chi^- \) for all \(x \in E \).
- \(\chi(x) = \chi^+ \) if \(x \in E^+ \).
- \(\chi(x) = \chi^- \) if \(x \in E^- \).

Let \(x^* : \mathbb{R} \to [-\infty, +\infty] \) be defined by

\[x^*(x) = \sup_{t \in \mathbb{R}} (c, t) \epsilon E. \]

\[
\text{HW #3}
\]