1 Short Questions (20 points)

State whether each of the following statements is true or false (2 point). For each, explain your answer in (at most) a short paragraph, example or counter-example (3 points).

(a) A weakly dominated strategy can never be a best response.

(b) Strategic form is the most complete way to model conflict situations.

(c) A Nash equilibrium is a situation where every player gets always his or her absolute maximum payoff.

(d) Backward induction can only be used to solve games with perfect information.

(a) False. A weakly dominated strategy can be a best response.

\[
\begin{bmatrix}
2 & 1 \\
3 & 1
\end{bmatrix}
\]

Strategy \(A \) of player 1 is weakly dominated. However, it is a best response to player 2 playing \(B \).

(b) False. The extensive form is the most complete way to model a conflict.

(c) False. A Nash equilibrium is a situation where every player maximizes his payoff given what the other players did. A Nash equilibrium could yield a situation where none of the players reaches his absolute maximum payoff.

\[
\begin{bmatrix}
10 & 40 & 0 & 0 \\
25 & 25 & 40 & 100
\end{bmatrix}
\]

The NE \((1, 0) \times (1, 0)\) provides a payoff equal to 40 to (8), while its abs. max is 100.

(d) True. Backward induction can only be used to extensive games with perfect information. For games with imperfect information, we can have more than one single node in an information set; therefore, we cannot decide which action to take.

1This is NOT an open book exam. The exam game lasts 120 minutes.
2 Party Game (20 points)

Player A has invited player B to his party. Player A must choose whether or not to hire a clown. Simultaneously, player B must decide whether or not to go to the party. Player B likes A but hates clowns (he even hates other people seeing clowns!) B’s payoff from going to the party is 4 if there is no clown, but 0 if there is a clown there. B’s payoff from not going to the party is 3 if there is no clown at the party, but 1 if there is a clown at the party. A likes clowns (he especially likes B’s reaction to them) but does not like paying for them. A’s payoff if B comes to the party is 4 if there is no clown, but 8 - x if there is a clown (x is the cost of a clown). A’s payoff if B does not come to the party is 2 if there is no clown, but 3 - x if there is a clown there.

(a) Write down the payoff matrices of this game (4 points).

(b) Suppose x = 0. Identify all dominated strategies. Explain. Find a Nash equilibrium. What are your equilibrium payoffs? (6 points)

(c) Suppose x = 2. Identify all dominated strategies. Explain. Is there any Nash equilibrium in pure strategies? Find a Nash equilibrium. (6 points)

(d) For which values of x player A would always avoid hiring a clown independently from player B’s choice? Explain. (4 points)
To find a NE we use the Lemke & Howson algorithm after adding 1 to the player B's matrix → \[
\begin{bmatrix}
6,1 & 1,2 \\
4,5 & 2,4
\end{bmatrix}
\]

\[
S_1 = 1 - x_1^* - 5x_2^* \\
S_2 = 1 - 2x_1^* - 4x_2^*
\]

\[
\begin{array}{ccc|c|c}
& x_1^* & x_2^* & S_1 & S_2 \\
\hline
1 & 1 & 5 & 1 & 0 & 1 \\
2 & 4 & 0 & 1 & 1
\end{array}
\]

\[
\begin{array}{cc|c|c}
y_1' & y_2' & n_1 & n_2 \\
\hline
6 & 1 & 0 & 1 \\
4 & 2 & 0 & 1 & 1
\end{array}
\]

\[
\begin{array}{ccc|c|c}
y_1' & y_2' & n_1 & n_2 \\
\hline
1 & 1 & -y_1' & -y_2' \\
1 - 4 & 1 & -2y_1' & -2y_2'
\end{array}
\]

\[
\begin{array}{ccc|c|c}
y_1' & y_2' & n_1 & n_2 \\
\hline
1 & 0 & 1 & 0 & 1/6 \\
0 & 0 & 0 & 1/6 & 2/6
\end{array}
\]

\[
\begin{array}{ccc|c|c}
y_1' & y_2' & n_1 & n_2 \\
\hline
1 & 0 & 3/2 & 0 & 3/8 \\
0 & 1 & -1/2 & 0 & 1/4
\end{array}
\]

Therefore: \(x_1 = 1/2 \) & \(x_2 = 1/2 \) while \(y_1 = \frac{1}{2} \) & \(y_2 = \frac{2}{3} \)

\(\alpha = \frac{8}{3} \) & \(\beta = 3 \).

(c) Stat. (c) for player A would always be strictly dominated if \(8 - x < 4 \) & \(3 - x < 2 \)

\(\Rightarrow x > 4 \) & \(x > 1 \). Therefore, if \(x > 4 \), A would avoid hiring a clown.
3 Four Prisoners (25 points)

Four prisoners, A, B, C and D, are sentenced to death and held, respectively, in four separate cells 1, 2, 3 and 4. The prisoners are to be executed at 06:00 am. The night of the execution, the governor has selected one cell number at random and its occupant, at 05:00 am, is to be pardoned. At 04:00 am exactly, the governor’s office communicates the chosen cell’s number to the prison’s commander. At 04:10 am, a guardian comes to see prisoner A. The guardian knows which prisoner is pardoned and also knows that prisoner D passed away late that night (i.e., cell number 4 is now empty), but he is not allowed to tell. Prisoner A offers a bribe to the guardian to let him know the cell’s number of one of the others who is going to be executed. Prisoner A says “If 2 is to be pardoned, give me number 3 or 4. If 3 is to be pardoned, give me number 2 or 4. If 4 is to be pardoned, give me number 2 or 3. And if I am to be pardoned, give me number 2, 3 or 4.”

Prisoner A assumes that the four cells have the same probability of being selected by the governor. He also assumes that the guardian assigns the same probability to the cells he has to choose from. The guardian accepts the bribe but decides, on his own, to never give number 4 and to flip a coin in case he has to choose between 2 or 3. Moreover, the guardian demands an additional bribe from prisoner A if he requests his help to be moved, secretly, to cell number 4.

(a) Draw the game tree illustrating prisoner A’s problem. (10 points)

(b) Do you think that prisoner A would increase his chances to be pardoned if he is moved to cell 4? Explain. (10 points)

(c) If prisoner A knew that the guardian would never give him number 4, do you think that he would change his mind? Explain. (5 points)

Prisoner A would not increase his chances to be pardoned if he is moved to cell 4.
(c) If A knew that the guardian would never give him number, then we take the block probabilities into account:

\[U_A(M) = \frac{1}{8} D + \frac{1}{8} D + \frac{1}{4} D + \frac{1}{4} D + \frac{1}{8} L + \frac{1}{8} L \]

\[= \frac{3}{4} D + \frac{1}{4} L. \]

\[U_A(N) = \frac{1}{8} L + \frac{1}{8} L + \frac{1}{4} D + \frac{1}{4} D + \frac{1}{4} D + \frac{1}{8} D \]

\[= \frac{3}{4} D + \frac{1}{4} L. \]

\[\Rightarrow U_A(M) = U_A(N). \]

He would not change his mind.
4 Lend Money with No Regret (20 points)

Ali is deciding whether or not to lend money as a loan to his best friend Badr. Badr is poor and has a bad credit history. Badr has to decide whether or not to buy new furniture for his house. If he buys the furniture, he will be unable to repay the loan. If he does not buy, he will repay the loan. The payoffs in this game are as follows: if Ali refuses to lend money to Badr and Badr buys the furniture using a high interest bank loan, then Ali gets 0 and Badr gets -2. If Ali refuses to lend money to Badr and Badr does not buy, then Ali and Badr get 0. If Ali lends money to Badr and Badr buys, then Ali gets -2 and Badr gets 7. If Ali lends money to Badr and Badr does not buy, then Ali gets a payoff of 3 and Badr gets a payoff of 5.

(a) Suppose this game is played simultaneously. Use the Lemke & Howson algorithm to find a Nash equilibrium for this game. (8 points)

(b) Suppose this game is played sequentially with perfect information and Ali plays first. Draw the game’s tree. Use backward induction to find a Nash equilibrium for this game. (6 points)

(c) Suppose this game is played sequentially with perfect information and Badr plays first. Draw the game’s tree. Use backward induction to find a Nash equilibrium for this game. (6 points)
5 Move Game (15 points)

Two chain stores A and B are to enter in fierce competition. First, A has to choose whether to get “IN” or to stay “OUT” of the market zone served by the chain B stores. If A chooses to stay “OUT” the game ends, and the payoffs are as follows; A gets 2, and B gets 0. If A chooses to get “IN” then B observes this and has to choose whether to get “in” or to stay “out” of the market zone served by the chain A stores. If B chooses “out” the game ends, and the payoffs are; B gets 2, and A gets 0. If A chooses “IN” and B chooses “in” the game ends, and the payoffs are; B gets 3, and A gets -1.

(a) Draw a tree representing this game. (4 points)

(b) Find a subgame-perfect Nash equilibrium (SPNE) for this game. Detail how did you get your equilibrium. (5 points)

(c) Find all Nash equilibria for the reduced representation of this game. Which of these equilibria is a SPNE? Explain. (6 points)

(b) We can use backward induction since the game is with perfect information.

A decides to play “in”:

\[(A, in) \]

\[\Rightarrow \]

B decides to play “in”:

\[(A, in) \times (B, in) \]

(c) Reduced form

\[\begin{array}{c|cc}
(A) & in & out \\
--- & --- & --- \\
out & 2,0 & 2,0 \\
--- & --- & --- \\
(0,1) & (0,1) & (0,1) \\
--- & --- & --- \\
out & 2,0 & 2,0 \\
\end{array} \]

Strat. In Equilibrium, strategy profile that
\[(0,1) \times (0,1) \]

Two Nash Equilibria in pure strategies

\[(0,1) \times (1,0) \]

The NE (0,1) x (1,0) is the unique SPNE.

The equilibrium (0,1) x (0,1) is not SPNE as
its restriction to B's subgame is not an equilibrium.