Exercice 1

CellCom, a company producing mobile phones has designed three different models and is intending to commercialize its products in the middle-east region. Based on some data provided by CellCom, you are chosen to elaborate a production plan that would maximize its expected profits on a short period of time.

The three models of mobile phones, called Z100, Z200 and Z300 are assembled in the same factory. The following table shows the amount of time (in minutes) needed to finalize each unit of the three mobile phones in three departments; Assembling, Packing and Administration.

<table>
<thead>
<tr>
<th>Phone</th>
<th>Assembling</th>
<th>Packing</th>
<th>Admin.</th>
<th>Comp. Cost</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z100</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Z200</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>150</td>
</tr>
<tr>
<td>Z300</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>200</td>
</tr>
</tbody>
</table>

The table also gives the cost per hour of each labour hour, the amount of labour hours available in the three departments, the total cost of the components used for each phone unit (in SAR) and also the suggested commercialization price (in SAR) of each phone unit.

(a) Define all decision variables needed.

(b) Give the objective function to optimize.

(c) Write all the constraints to be satisfied.

Exercice 2

Given the following linear program:

\[
\begin{align*}
\min_{x_1, x_2} & \quad 2x_1 + 5x_2 \\
\text{s.t.} & \quad 4x_1 + x_2 \leq 5, \\
& \quad x_1 + 2x_2 \geq 4, \\
& \quad x_1, x_2 \geq 0.
\end{align*}
\]

(a) Solve the linear program graphically.

(b) Write the standard form corresponding to the linear program.

(c) Solve the linear program using the Simplex method.

\[1\text{Dr. Slim Belhaiza (c), February, 2014}\]
\[2\text{This is NOT a team assignment. Make sure that you submit your answers individually using your own words.}\]
Exercice 3
Consider the following linear program:

\[\begin{align*}
\text{max} & \quad x_1 + 2x_2 + 3x_3 \\
\text{s.t} & \quad x_1 + 2x_2 + 3x_3 \leq 3, \\
& \quad 2x_1 + x_2 + x_3 \leq 4, \\
& \quad 3x_1 + 3x_2 + 2x_3 \leq 5, \\
& \quad x_1, x_2, x_3 \geq 0.
\end{align*} \]

(a) Write the standard form corresponding to this linear program.

(b) Solve the linear program using the Simplex method (Tableau).

(c) Give the optimal basic feasible solution found.

Exercice 4
The following Simplex tableau corresponds to the representation of a basic feasible solution of a linear program during its optimization.

\[
\begin{array}{ccccccc|c|c}
\text{c}^T & ? & ? & ? & 0 & 0 & 0 \\
\hline
\text{Basis} & x_1 & x_2 & x_3 & e_1 & e_2 & e_3 & b_j & z_{pj} \\
\hline
x_1 & 1 & 0 & 1 & 3 & 3 & 0 & 4 \\
x_2 & 0 & 1 & 2 & 2 & 1 & 0 & 2 \\
e_3 & 0 & 0 & 1 & 2 & 2 & 1 & 3 \\
\text{RC} & 0 & 0 & -2 & 1 & 4 & 0 & z = 12 \\
\end{array}
\]

(a) Complete the missing values in the Tableau.

(b) Perform a single pivot iteration in case the objective has to be maximized.

(c) Perform a single pivot iteration in case the objective has to be minimized.

(d) Give a possible original expression of the linear program.

(e) Compute the reduced costs of the variables in case the basis is composed by: \(x_1, x_3 \) and \(e_2 \).