1. The function $f(x) = \begin{cases}
 x^2 + bx & \text{if } x \leq 1 \\
 ax + b & \text{if } x > 1
\end{cases}$

is differentiable everywhere. Then $a + b =$

a) 0
b) 2
c) -2
d) 1
e) -1

2. If there are two tangent lines from the point $P(0,0)$ that touch the graph of $f(x) = x^2 + x + 1$ at $x = a$ and $x = b$, then $a b =$

a) -1
b) 1
c) 0
d) 2
e) -2
3. Using the graph of $f(x) = e^x$, the maximum value of δ such that $|f(x) - 1| < 0.1$ whenever $|x| < \delta$ is equal to

a) $\ln 11 - \ln 10$

b) $\ln 11 - \ln 9$

c) $\ln 10 - \ln 9$

d) $\ln 11$

e) $\ln 10$

4. If $f(x) = (x^2 - 3x)^{40}$, then $f^{(80)}(2) =$

a) $80!$

b) 80

c) 0

d) $3(79!)$

e) $2(40!)$
5. If \(h(x) = \frac{\csc x}{g(x) + 1} \) with \(h'(\frac{\pi}{2}) = 2 \) and \(g'(\frac{\pi}{2}) = 1 \), then \(g'(\frac{\pi}{2}) \) is

a) -8
b) 8
c) 4
d) -4
e) 0

6. If \(y = \tan^2 x \), then \(y'' = \)

a) \(6y^2 + 8y + 2 \)
b) \(6y^2 + 8y \)
c) \(6y^2 + 4y + 2 \)
d) \(6y^2 + 4y \)
e) \(6y^2 - 8y + 1 \)
7. The slant asymptote of \(f(x) = 2e^{-x} - 2x + 3 \) is

a) \(y = -2x + 3 \)
b) \(y = 2x - 3 \)
c) \(y = -2x \)
d) \(y = x \)
e) \(y = -2x + 5 \)

8. A particle is moving along the curve \(y = \tan^{-1} x \). As the particle passes through the point \((1, \frac{\pi}{4}) \), its \(x \)-coordinate increases at a rate of 2 cm/s. The rate of change of the distance from the particle to the origin at that instant is

a) \(\frac{8 + \pi}{\sqrt{16 + \pi^2}} \) cm/s
b) \(\frac{8 + \pi}{2\sqrt{16 + \pi^2}} \) cm/s
c) \(\frac{4 + \pi}{4\sqrt{16 + \pi^2}} \) cm/s
d) \(\frac{2 + \pi}{\sqrt{16 + \pi^2}} \) cm/s
e) \(\frac{4 + \pi}{\sqrt{16 + \pi^2}} \) cm/s
9. Using linear approximation, the number $\sqrt[3]{9}$ is estimated as

a) $\frac{25}{12}$
b) $\frac{24}{12}$
c) $\frac{23}{12}$
d) $\frac{22}{12}$
e) $\frac{21}{12}$

10. If $f'(x)$ is a continuous function and $f'(2) = 5$, then $\lim_{x \to 0} \frac{f(2 + 3x) - f(2 - 4x)}{x}$

a) 35
b) 30
c) 20
d) 25
e) 40
11. The position function of a particle moving along a straight line is

 \[s(t) = 2t - t^2 \]

 for \(t \) in \([0, 5]\), where \(t \) is measured in seconds and \(s \) in meters.
 The particle is speeding up when

 a) \(1 < t < 5 \)
 b) \(0 < t < 1 \)
 c) \(0 < t < 2 \)
 d) \(0 < t < 3 \)
 e) \(0 < t < 5 \)

12. The radius of a sphere is measured to be 3 cm with a maximum error in measurement of 0.1 cm. Using differentials, the maximum error in calculating volume of the sphere is

 a) \(\frac{36\pi}{10} \) cm\(^3\)
 b) \(36\pi \) cm\(^3\)
 c) \(\frac{9\pi}{10} \) cm\(^3\)
 d) \(9\pi \) cm\(^3\)
 e) \(\frac{\pi}{10} \) cm\(^3\)
13. If $xy^2 - 3x^2y = x - 3$, then y' and y'' at the point (1, 1) are given as

a) $y' = -6$, $y'' = 114$

b) $y' = 6$, $y'' = -114$

c) $y' = -6$, $y'' = -112$

d) $y' = 6$, $y'' = 114$

e) $y' = -6$, $y'' = 112$

14. The slope of the line tangent to the curve $y = \sqrt[3]{\frac{(x+1)^5(x+2)^4}{x^2+11}}$ at the point (1, 6) is

a) $\frac{22}{3}$

b) $\frac{44}{3}$

c) $\frac{11}{9}$

d) $\frac{11}{6}$

e) $\frac{25}{3}$
15. The graph of the function \(y = x^2 \ln x \) has

a) absolute minimum \(-\frac{1}{2e}\) at \(x = \frac{1}{\sqrt{e}} \)

b) absolute maximum \(-\frac{1}{2e}\) at \(x = \frac{1}{\sqrt{e}} \)

c) two critical numbers \(x = 0 \) and \(x = \frac{1}{\sqrt{e}} \)

d) absolute maximum at \(x = 0 \) and absolute minimum at \(x = \frac{1}{\sqrt{e}} \)

e) no absolute extrema

16. The graph of the function \(f(x) = x - 3 + \sin^2 \left(\frac{x}{3} \right) \) crosses the \(x \)-axis at

a) one point
b) no points
c) two points
d) three points
e) infinite number of points
17. Which of the following is **FALSE** about the graph of the function \(f(x) = \frac{x^2}{x^3 - 1} \)?

a) The graph is decreasing on \((−∞, −\sqrt{2}) \cup (0, ∞)\)
b) The graph is decreasing on \((−∞, −\sqrt{2}) \cup (0, 1) \cup (1, ∞)\)
c) The graph has two critical numbers
d) The graph has one horizontal asymptote and one vertical asymptote
e) The graph crosses or touches the x-axis at one point only

18. Which of the following is **TRUE** about the graph of the function \(f(x) = x^{\frac{5}{3}} - x^{\frac{2}{3}} \)?

a) The graph has one inflection point
b) The graph is concave up on \((−∞, −\frac{1}{5})\)
c) The graph is concave down on \((−∞, 0)\)
d) The graph is concave down on \((0, ∞)\)
e) The graph is concave down on \((−\frac{1}{5}, ∞)\)
19. The value of the limit $\lim_{x \to 0} (1 + 2x)\cot x$ equals

a) e^2

b) $\frac{1}{e}$

c) ∞

d) 1

e) Does not exist

20. A store can sell 80 bicycles a month at a price of $100 each. For each $10 increase in the price, 5 fewer bicycles will be sold each month. Certain price will result in the maximum monthly revenue from bicycles sales. The maximum monthly revenue is

a) 8450

b) 8500

c) 8550

d) 8400

e) 8000
21. Use Newton’s method to find the positive fourth root of 2 by solving the equation \(x^4 = 2 \). If you start with \(x_0 = 1 \) to find \(x_1 \) and \(x_2 \), then \(x_1 - x_2 = \)

a) \(\frac{113}{2000} \)

b) \(-\frac{113}{2000} \)

c) \(\frac{2387}{2000} \)

d) \(\frac{5}{16} \)

e) \(-\frac{5}{16} \)

22. \(\int \left(4^{(x+1)} - \frac{3}{\sqrt{1-x^2}} \right) dx = \)

a) \(\frac{4^{(x+1)}}{\ln 4} + 3 \cos^{-1} x + C \)

b) \(\frac{4^{(x+1)}}{\ln 4} + 3 \sin^{-1} x + C \)

c) \(\frac{4^{(x+1)}}{\ln 4} - 3 \cos^{-1} x + C \)

d) \(\frac{4^x}{\ln 4} + 3 \sin^{-1} x + C \)

e) \(\frac{4^x}{\ln 4} + 3 \cos^{-1} x + C \)
23. Consider the area below the graph of \(f(x) = x - x^2 \) and above the \(x \)-axis. If we use the left endpoint rule and 5 subintervals to approximate this area, we get

a) \(\frac{4}{25} \)

b) \(\frac{1}{5} \)

c) \(\frac{1}{4} \)

d) \(\frac{6}{25} \)

e) \(\frac{4}{5} \)

24. The Riemann sum formula for the function \(f(x) = 1 + x^2 \) obtained by dividing the interval \([0, 3]\) into \(n \) equal subintervals and using the right endpoint rule is

a) \(3 + \frac{9(n + 1)(2n + 1)}{2n^2} \)

b) \(\frac{9(n + 1)(2n + 1)}{2n^2} \)

c) \(3 + \frac{3(n + 1)(2n + 1)}{2n^2} \)

d) \(\frac{3(n + 1)(2n + 1)}{2n^2} \)

e) \(3 + \frac{9(n + 1)^2}{2n^2} \)
25. If \(f(3) = 2 \) and \(f'(x) \geq 3 \) for \(2 \leq x \leq 3 \), then the largest possible value of \(f(2) \) is

a) \(-1\)
b) 1
c) \(\frac{1}{3} \)
d) \(\frac{1}{6} \)
e) 0

26. If \(c \) is a number satisfying the conclusion of the Mean Value Theorem when applied to \(f(x) = \ln x \) on \([1, e]\), then \(c = \)

a) \(e - 1 \)
b) \(1 - e \)
c) \(e \)
d) \(2e \)
e) \(e - 2 \)
27. The sum of the absolute maximum value and the absolute minimum value of the function \(f(x) = \sin x + \cos x + 1 \) on the interval \([0, \frac{\pi}{2}]\) is

a) \(3 + \sqrt{2}\)
b) \(1 + \sqrt{2}\)
c) \(2 + \sqrt{2}\)
d) \(1 + \frac{1}{\sqrt{2}}\)
e) \(\frac{1}{\sqrt{2}}\)

28. If \((a, b)\) is a point on the hyperbola \(x^2 - y^2 = 4\) which is closest to the point \((0, 1)\), then \(b = \)

a) \(\frac{1}{2}\)
b) \(\frac{1}{4}\)
c) \(1\)
d) \(9\)
e) \(\frac{1}{11}\)