Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve $r(\theta) = 1 - \sin \theta$.

2. (2 pts) Find the angle that the vector $\vec{v} = -\sqrt{3} \, \hat{i} + \hat{j}$ makes with positive x-axis.

3. (6 pts) Consider the points $A(1, -1, 2), B(2, -3, 0), C(-1, -2, 0), D(2, 1, -1)$.
 (a) Find the area of the triangle ABC.
 (b) Find the volume of the parallelepiped that the vectors $\vec{AB}, \vec{AC}, \vec{AD}$ as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \sin \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = -\sqrt{3} \hat{i} + \hat{j} \) makes with positive x-axis.

3. (6 pts) Consider the points \(A(1, -1, 2), B(2, -3, 0), C(-1, -2, 0), D(2, 1, -1) \).
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\vec{AB}, \vec{AC}, \vec{AD} \) as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \sin \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = -\sqrt{3} \hat{i} + \hat{j} \)
 makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(1, -1, 2), B(2, -3, 0), C(-1, -2, 0), D(2, 1, -1) \).
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \)
 as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \sin \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = -\sqrt{3} \, \vec{i} + \vec{j} \)
 makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(1, -1, 2), B(2, -3, 0), C(-1, -2, 0), D(2, 1, -1) \).
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \) as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \sin \theta. \]

2. (2 pts) Find the angle that the vector \[\vec{v} = -\sqrt{3} \hat{i} + \hat{j} \]
 makes with positive x-axis.

3. (6 pts) Consider the points \(A(1, -1, 2), B(2, -3, 0), C(-1, -2, 0), D(2, 1, -1) \).
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\vec{AB}, \vec{AC}, \vec{AD} \) as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve $r(\theta) = 1 - \sin \theta$.

2. (2 pts) Find the angle that the vector $\vec{v} = -\sqrt{3} \, \vec{i} + \vec{j}$ makes with positive $x-$axis.

3. (6 pts) Consider the points $A(1, -1, 2), B(2, -3, 0), C(-1, -2, 0), D(2, 1, -1)$.

 (a) Find the area of the triangle ABC.

 (b) Find the volume of the parallelepiped that the vectors $\vec{AB}, \vec{AC}, \vec{AD}$ as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \sin \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = -\sqrt{3} \, \hat{i} + \hat{j} \) makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(1, -1, 2), B(2, -3, 0), C(-1, -2, 0), D(2, 1, -1) \).
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \) as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \sin \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = -\sqrt{3} \hat{i} + \hat{j} \)
 makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(1, -1, 2), B(2, -3, 0), C(-1, -2, 0), D(2, 1, -1) \).
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\vec{AB}, \vec{AC}, \vec{AD} \) as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \sin \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = -\sqrt{3} \, \vec{i} + \vec{j} \) makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(1, -1, 2), B(2, -3, 0), C(-1, -2, 0), D(2, 1, -1) \).
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\vec{AB}, \vec{AC}, \vec{AD} \) as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \sin \theta. \]

2. (2 pts) Find the angle that the vector \(\mathbf{v} = -\sqrt{3} \hat{i} + \hat{j} \)
 makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(1, -1, 2), B(2, -3, 0), C(-1, -2, 0), D(2, 1, -1) \).
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\mathbf{AB}, \mathbf{AC}, \mathbf{AD} \) as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \sin \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = -\sqrt{3} \hat{i} + \hat{j} \) makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(1, -1, 2), B(2, -3, 0), C(-1, -2, 0), D(2, 1, -1). \)
 (a) Find the area of the triangle \(ABC. \)
 (b) Find the volume of the parallelepiped that the vectors \(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \) as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \sin \theta. \]

2. (2 pts) Find the angle that the vector \(\overrightarrow{v} = -\sqrt{3} \hat{i} + \hat{j} \) makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(1, -1, 2), B(2, -3, 0), C(-1, -2, 0), D(2, 1, -1) \).

 (a) Find the area of the triangle \(ABC \).

 (b) Find the volume of the parallelepiped that the vectors \(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \) as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve

 \[r(\theta) = 1 - \sin \theta. \]

2. (2 pts) Find the angle that the vector \(\mathbf{v} = -\sqrt{3} \mathbf{i} + \mathbf{j} \)
 makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(1, -1, 2), B(2, -3, 0), C(-1, -2, 0) \), \(D(2, 1, -1) \).

 (a) Find the area of the triangle \(ABC \).

 (b) Find the volume of the parallelepiped that the vectors \(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \) as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \sin \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = -\sqrt{3} \, \hat{i} + j \)
 makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(1, -1, 2), B(2, -3, 0), C(-1, -2, 0), D(2, 1, -1) \).
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \)
 as its adjacent edges.
1. (2 pts) Find the arc length of the polar curve
\[r(\theta) = 1 - \sin \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = -\sqrt{3} \hat{i} + \hat{j} \)
makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(1, -1, 2), B(2, -3, 0), C(-1, -2, 0), D(2, 1, -1) \).
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\vec{AB}, \vec{AC}, \vec{AD} \) as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \sin \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = -\sqrt{3} \hat{i} + \hat{j} \) makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(1, -1, 2), B(2, -3, 0), C(-1, -2, 0), D(2, 1, -1) \).
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \) as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \cos \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = \sqrt{3} \mathbf{i} + \mathbf{j} \)
 makes with positive x-axis.

3. (6 pts) Consider the points \(A(-1, -2, 0), B(2, 1, -1), \)
 \(C(1, -1, 2), D(2, -3, 0). \)
 (a) Find the area of the triangle \(ABC. \)
 (b) Find the volume of the parallelepiped that the vectors \(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \)
 as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \cos \theta. \]

2. (2 pts) Find the angle that the vector \(\mathbf{v} = \sqrt{3} \mathbf{i} + \mathbf{j} \)
 makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(-1, -2, 0), B(2, 1, -1), C(1, -1, 2), D(2, -3, 0). \)
 (a) Find the area of the triangle \(ABC. \)
 (b) Find the volume of the parallelepiped that the vectors \(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \)
 as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve $r(\theta) = 1 - \cos \theta$.

2. (2 pts) Find the angle that the vector $\vec{v} = \sqrt{3} \hat{i} + \hat{j}$ makes with positive $x-$axis.

3. (6 pts) Consider the points $A(-1, -2, 0), B(2, 1, -1), C(1, -1, 2), D(2, -3, 0)$.
 (a) Find the area of the triangle ABC.
 (b) Find the volume of the parallelepiped that the vectors $\vec{AB}, \vec{AC}, \vec{AD}$ as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \cos \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = \sqrt{3} \hat{i} + \hat{j} \)
 makes with positive x-axis.

3. (6 pts) Consider the points \(A(-1, -2, 0), B(2, 1, -1), C(1, -1, 2), D(2, -3, 0). \)
 (a) Find the area of the triangle \(ABC. \)
 (b) Find the volume of the parallelepiped that the vectors \(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \)
 as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \cos \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = \sqrt{3} \hat{i} + \hat{j} \) makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(-1, -2, 0), B(2, 1, -1), C(1, -1, 2), D(2, -3, 0) \).
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \) as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \cos \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = \sqrt{3} \hat{i} + \hat{j} \)
 makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(-1, -2, 0), B(2, 1, -1), C(1, -1, 2), D(2, -3, 0) \).
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\vec{AB}, \vec{AC}, \vec{AD} \)
 as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \cos \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = \sqrt{3} \vec{i} + \vec{j} \) makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(-1, -2, 0), B(2, 1, -1), C(1, -1, 2), D(2, -3, 0). \)
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\vec{AB}, \vec{AC}, \vec{AD} \) as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve $r(\theta) = 1 - \cos \theta$.

2. (2 pts) Find the angle that the vector $\vec{v} = \sqrt{3} \hat{i} + \hat{j}$ makes with positive $x-$axis.

3. (6 pts) Consider the points $A(-1, -2, 0), B(2, 1, -1), C(1, -1, 2), D(2, -3, 0)$.
 (a) Find the area of the triangle ABC.
 (b) Find the volume of the parallelepiped that the vectors $\vec{AB}, \vec{AC}, \vec{AD}$ as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \cos \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = \sqrt{3} \hat{i} + \hat{j} \)
 makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(-1, -2, 0), B(2, 1, -1), \)
 \(C(1, -1, 2), D(2, -3, 0). \)
 (a) Find the area of the triangle \(ABC. \)
 (b) Find the volume of the parallelepiped that the vec-
 tors \(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \) as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve $r(\theta) = 1 - \cos \theta$.

2. (2 pts) Find the angle that the vector $\vec{v} = \sqrt{3}\hat{i} + \hat{j}$ makes with positive x-axis.

3. (6 pts) Consider the points $A(-1, -2, 0), B(2, 1, -1), C(1, -1, 2), D(2, -3, 0)$.
 (a) Find the area of the triangle ABC.
 (b) Find the volume of the parallelepiped that the vectors $\vec{AB}, \vec{AC}, \vec{AD}$ as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \cos \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = \sqrt{3} \, \hat{i} + \hat{j} \)
 makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(-1,-2,0), B(2,1,-1), C(1,-1,2), D(2,-3,0). \)
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \)
 as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \cos \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = \sqrt{3} \hat{i} + \hat{j} \)
 makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(-1, -2, 0), B(2, 1, -1), C(1, -1, 2), D(2, -3, 0) \).
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\vec{AB}, \vec{AC}, \vec{AD} \)
 as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \cos \theta. \]

2. (2 pts) Find the angle that the vector \(\mathbf{v} = \sqrt{3} \mathbf{i} + \mathbf{j} \) makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(-1, -2, 0), B(2, 1, -1), C(1, -1, 2), D(2, -3, 0). \)
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \) as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \cos \theta. \]

2. (2 pts) Find the angle that the vector \(\mathbf{v} = \sqrt{3} \mathbf{i} + \mathbf{j} \)
 makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(-1, -2, 0), B(2, 1, -1), \)
 \(C(1, -1, 2), D(2, -3, 0). \)
 (a) Find the area of the triangle \(ABC. \)
 (b) Find the volume of the parallelepiped that the vec-
 tors \(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \) as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \cos \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = \sqrt{3} \hat{i} + \hat{j} \)
 makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(-1, -2, 0), B(2, 1, -1), C(1, -1, 2), D(2, -3, 0). \)
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\vec{AB}, \vec{AC}, \vec{AD} \)
 as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \cos \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = \sqrt{3} \hat{i} + \hat{j} \) makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(-1, -2, 0), B(2, 1, -1), C(1, -1, 2), D(2, -3, 0). \)
 (a) Find the area of the triangle \(ABC \).
 (b) Find the volume of the parallelepiped that the vectors \(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \) as its adjacent edges.
Instructions: Show Your Work!

1. (2 pts) Find the arc length of the polar curve
 \[r(\theta) = 1 - \cos \theta. \]

2. (2 pts) Find the angle that the vector \(\vec{v} = \sqrt{3} \hat{i} + \hat{j} \)
 makes with positive \(x \)-axis.

3. (6 pts) Consider the points \(A(-1, -2, 0), B(2, 1, -1), \)
 \(C(1, -1, 2), D(2, -3, 0). \)
 (a) Find the area of the triangle \(ABC. \)
 (b) Find the volume of the parallelepiped that the vectors \(\vec{AB}, \vec{AC}, \vec{AD} \)
 as its adjacent edges.