Math421: Introduction to Topology

Name :

ID : ...

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>
Exercise 1. Let \mathcal{U} be the usual topology on \mathbb{R}. Consider the two topologies on \mathbb{R} defined by:

$$\mathcal{LL} = \{ V \subseteq \mathbb{R} : \text{if } x \in V, \text{ then there exist } a, b \in \mathbb{R} \text{ such that } x \in [a, b] \subseteq V \}$$

and

$$\mathcal{UL} = \{ V \subseteq \mathbb{R} : \text{if } x \in V, \text{ then there exist } a, b \in V \text{ such that } x \in]a, b[\subseteq V \}.$$

The topology \mathcal{LL} (resp. \mathcal{UL}) is called the lower limit topology (resp., upper limit topology) on \mathbb{R}.

(1) Show that $B_1 = \{ [a, b] : a, b \in \mathbb{R} \}$ is a basis of \mathcal{LL} and $B_2 = \{]a, b[: a, b \in \mathbb{R} \}$ is a basis of \mathcal{UL}.

(2) Show that:

- $\mathcal{U} \leq \mathcal{LL}$ and $\mathcal{U} \neq \mathcal{LL}$
- $\mathcal{U} \leq \mathcal{UL}$, and $\mathcal{U} \neq \mathcal{UL}$
- $\mathcal{LL} \neq \mathcal{UL}$ and $\mathcal{UL} \neq \mathcal{LL}$.
(3) Show that the function
\[f : (\mathbb{R}, \mathcal{L}) \to (\mathbb{R}, \mathcal{U}) \]
\[x \mapsto -x \]

is a homeomorphism.
Let $g : \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$g(x) = \begin{cases}
 x + 1 & \text{if } x > 1 \\
 x & \text{if } x \leq 1
\end{cases}$$

(4) Is $g : (\mathbb{R}, \mathcal{U}) \rightarrow (\mathbb{R}, \mathcal{U})$ continuous?

(5) Is $g : (\mathbb{R}, \mathcal{L}) \rightarrow (\mathbb{R}, \mathcal{U})$ continuous?
(6) Is \[g : (\mathbb{R}, \mathcal{U}) \rightarrow (\mathbb{R}, \mathcal{U}) \] continuous?
Exercise 2. Let X be a set and

$$\mathcal{T}_{cc} = \{ U \subseteq X : U = \emptyset \text{ or } X - U \text{ is a countable set} \}.$$

(a) Show that \mathcal{T}_{cc} is a topology on X.
(b) Show that \((X, T_{ce})\) is discrete if and only if \(X\) is countable.
Exercise 3. Let X be a nonempty set and $d \in X$. Consider
\[\mathcal{T} = \{ U \subseteq X : U = X \text{ or } d \notin U \}. \]

(a) Show that \mathcal{T} is a topology on X.

(b) Show that for each $A \subseteq X$, we have $\overline{A} = A \cup \{d\}$.
(c) Suppose that $d \in A$; then find $\text{int}(A)$.
(d) Suppose that \(X = \{a, b, c, d\} \). List all the open sets and closed sets of \((X, \mathcal{T})\).