Exercise 1
Suppose that f is analytic for $|z| < 2$ and α is a complex constant. Evaluate

$$I = \int_{|z|=1} (\text{Re } z + \alpha) \frac{f(z)}{z} \, dz$$
Exercise 2

Let f be an entire function and $n \in \mathbb{N}, n \geq 1$.

(i) Find $I_f = \int_{|z|=2} \frac{f(z)}{(z - 1)^{n+2}} \, dz$.

(ii) What is the value of I_f if f is a polynomial of degree n?
Exercise 3

True or false (if true, give a short explanation, if false, give a counterexample)

(i) If f is an entire function and bounded on a half-plane, then f is constant.

(ii) If f is analytic and bounded on $|z| > 1$, then f is constant.

(iii) If f is entire and bounded on $|z| > 1$, then f is constant.

(iv) If f is analytic in the punctured complex plane $\mathbb{C} \setminus \{0\}$ such that $f(1/n) = 0$, for all $n \geq 1$. Then $f = 0$.

(v) Suppose f is analytic in the annulus $1 \leq |z| \leq R$, $|f(z)| \leq R^n$ for $|z| = R$ and $|f(z)| \leq 1$ on $|z| = 1$. Then $|f(z)| \leq |z|^n$ in the annulus.
Exercise 4

In each case, exhibit a nonconstant f having the desired properties or explain why no such function exists:

(i) f is analytic in $|z| < 1$ with $f\left(\frac{1}{n}\right) = \frac{1}{n^2 + 1}$ for $n \in \mathbb{N}$.

(ii) f is analytic in $|z| < 1$ with $f\left(\frac{1}{n}\right) = \frac{(-1)^n}{n}$, $n \geq 1$.

(iii) f is analytic in $|z| < 1$ with $f\left(\frac{1}{n}\right) = \frac{1}{\sqrt{n}}$, $n \geq 1$.

(iv) f is analytic in $\mathbb{C} \setminus \{0\}$ with $f'(z) = \frac{\cos z}{z}$.
Exercise 5

Prove the following sharper version of the Schwarz’s lemma: If \(f : \Delta \to \Delta \) is analytic with \(f(0) = f'(0) = \ldots f^{(n-1)}(0) = 0, n \in \mathbb{N}, n \geq 1 \), then

\[
|f(z)| \leq |z|^n \quad \text{for all } z \in \Delta \text{ and } |f^{(n)}(0)| \leq n!
\]

Moreover, \(f(z) = az^n \) for some \(a, |a| = 1 \) if and only if either \(|f^{(n)}(0)| = n! \) or \(|f(c)| = |c|^n \) for some \(c \in \Delta \setminus \{0\} \).
Exercise 6
Let $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk and $\mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ be the upper half-plane.

1. Show that $\phi : \mathbb{H} \to \Delta, z \mapsto \frac{z - i}{z + i}$ is 1-1 analytic mapping and find ϕ^{-1}.

2. Let $f : \Delta \to \mathbb{H}$ be analytic, with $f(0) = i$. Show that

 (a) $\frac{1 - |z|}{1 + |z|} \leq |f(z)| \leq \frac{1 + |z|}{1 - |z|}$

 (b) $|f'(0)| \leq 2$.

3. Find all analytic functions $f : \Delta \to \mathbb{H}$, such that $f(0) = i$ and $|f''(0)| = 2$.