Math 580: Convex Analysis

Major Exam 2

Fall 2014

Time Limit: 120 Minutes

You are required to show your work on each problem on this exam. The following rules apply:

- **If you use a “fundamental theorem” you must indicate this** and explain why the theorem may be applied.

- **Organize your work**, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.

- If you need more space, use the back of the pages; clearly indicate when you have done this.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Do not write in the table to the right.
1. (20 points) Let C be a nonempty, convex subset of \mathbb{R}^n and let \bar{x} be a boundary point of C. Show that the sets C and $\{\bar{x}\}$ form an extremal system.
2. (30 points) Let $C \subset \mathbb{R}^n$ be a convex set with $\bar{x} \in \mathbb{R}^n$.

 (a) Write a definition of the Normal Cone to C at \bar{x}, $N(\bar{x}; C)$.

 (b) Prove that the normal cone to C at \bar{x} is the singleton $\{0\}$ whenever $\bar{x} \in \text{int}(C)$.

3. (20 points) Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a convex function and $\bar{x} \in \text{dom} f$. Show only one of the following:

(a) $\partial^{\infty}(\bar{x}) = N(\bar{x}; \text{dom} f)$.
(b) $\partial(\bar{x}) = \{v \in \mathbb{R}^n : (v, -1) \in N((\bar{x}, f(\bar{x})); \text{epi} f)\}$.
4. (30 points) Consider the following convex function

\[f(x) = \begin{cases}
 x^2 - 1, & \text{if } |x| \leq 1, \\
 \infty, & \text{otherwise on } \mathbb{R}.
\end{cases} \]

Find
(a) \(\partial^\infty f(0) \), \(\partial^\infty f(-1) \).
(b) \(\partial f(0) \), \(\partial f(-1) \).