KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Department of Mathematics & Statistics

Math 401 Methods of Applied Mathematics II

Mid Term Exam 2 Term 142

Time Allowed 2 Hours

Name ___________________________ ID # _______

<table>
<thead>
<tr>
<th>Q #</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/10</td>
</tr>
<tr>
<td>2</td>
<td>/10</td>
</tr>
<tr>
<td>3</td>
<td>/ 10</td>
</tr>
<tr>
<td>4</td>
<td>/10</td>
</tr>
<tr>
<td>Total</td>
<td>/ 40</td>
</tr>
</tbody>
</table>

Important Note

Write clearly and show all work.

Instructor: F. D. Zaman
Q1) using the distributional definitions, show that

(i) \(H'(x) = \delta(x) \)

(ii) \(|x|' = H(x) - H(-x) \)

(iii) \(\delta(\sin x) = \sum_{0}^{\infty} \delta(x - n\pi) \)
Q2) Solve the Fredholm integral equations.

(i) \[\int_{a}^{b} k(x, y)u(y)dy = \lambda u \]
\[k(x, y) = k(y, x) \]

(ii) \[u(x) = x + \frac{1}{2} \int_{-1}^{1} (t - x)u(t)dt \]
Q 3) Write the given integral equation as a Volterra integral equation of second kind and then solve by iteration

\[\int_{0}^{x} e^{x-y} u(y) dy = e^{-x} \]
Q4) Write the following boundary value problem as a Fredholm integral equation

\[u'' + \lambda u = 0, \quad 0 < x < l \]
\[u(0) = 0, \ u(l) = 0. \]