Math 531 (Real Analysis) Final Exam: May 18, 2015

Time allowed: 3hrs
Maximum Points: 40

<table>
<thead>
<tr>
<th>Question Number</th>
<th>Marks</th>
<th>Maximum Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>
1. Prove that (a, ∞) is measurable set for any $a \in \mathbb{R}$. Hence show that any closed set in $(\mathbb{R}, | \cdot |)$ is measurable.
2. Define Lebesgue measure of a set of real numbers. Find Lebesgue measure of:

i) \(A = [-3, 4] \cup (1, 6) \)

ii) \(B = \bigcup_{k=1}^{\infty} \{ x \in \mathbb{R} : \frac{1}{2^k} \leq x < \frac{1}{2^{k+1}} \} \)
3. If \(f = g \) a.e. on \(D \) and \(f \) is a Lebesgue measurable function, then prove that \(g \) is a measurable function. Hence check whether or not the function

\[
g(x) = \begin{cases}
0 & \text{if } x \text{ rational} \\
1 & \text{if } x \text{ is irrational}
\end{cases}
\]

is measurable.
4. Let \(f = \chi_{[-1,1]} + \chi_{[-2,2]} + \chi_{[0,\infty)} - \chi_{(3,\infty)}. \)
Compute:

(1) Standard representation of this simple function.

(2) Lebesgue integral of \(f. \)
5. Let f be a non-negative measurable function on E. Then show that $\int f = 0$ if and only if $f = 0 \ a.e. \ on \ E$.
6. Let $E = (0, 1]$ and $f_n(x) = \begin{cases} n & \text{if } x \in \left(0, \frac{1}{n}\right] \\ 0 & \text{if } x \in \left(\frac{1}{n}, 1\right] \end{cases}$.

Explain why the conclusion $\left(\int_E f_n = \lim_n \int_E f_n\right)$ of Lebesgue dominated convergence theorem fails for the sequence $\{f_n\}$.
7. Let \(\nu \) be a signed measure on a measurable space \((X, \beta)\). Prove that there are sets \(A \) and \(B \) such that

(i) \(A \) is a positive set and \(B \) is a negative set.

(ii) \(X = A \cup B \)

(iii) \(A \cap B = \phi \).
8. Let μ, ν and λ be σ–finite measures. Denote the Radon-Nikodym derivative of ν with respect to μ by $\frac{d\nu}{d\mu}$.
If $\nu << \mu << \lambda$, then show that

$$\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \cdot \frac{d\mu}{d\lambda}.$$
9. If f and g are in $L^p (p \geq 1)$, then prove that $\| f + g \|_p \leq \| f \|_p + \| g \|_p$.
10. Prove that each function g in L^q defines a bounded linear functional F on L^p by the formula

$$F(f) = \int fg \quad \text{with} \quad \|F\| = \|g\|_q .$$
11. a) Show by means of an example that

\[\| f + g \|_{1/2} \geq \| f \|_{1/2} + \| g \|_{1/2} . \]

b) Propose converse of the statement in (Q10) and give name of the basic result needed in its proof. (Do not give the proof).
12. Let f be a bounded and measurable function on $[a, b]$ and

$$F(x) = \int_a^x f(t)dt + F(a).$$

Use bounded convergence theorem to show that $F'(x) = f(x)$ for almost all x in $[a, b]$.