Q.No.1: (5+5 marks) The distribution of the sample mid-range \(R \) from a uniform distribution of a random variable \(X \) on \(\left(\theta - \frac{1}{2}, \theta + \frac{1}{2} \right) \) has the density function:

\[
f(r) = n 2^{n-1} \left\{ \frac{1}{2} - |r - \theta| \right\}^{n-1}; \quad \theta - \frac{1}{2} < r < \theta + \frac{1}{2}
\]

(a) Show that the sample mid-range is an unbiased estimator of \(\theta \).
(b) Show that the sample mid-range is a consistent estimator of \(\theta \).

Q.No.2: (7 marks) If \(\hat{p}_1 \) is the most efficient estimator of \(p \) and \(\hat{p}_2 \) is a less efficient estimator with relative efficiency \(e = \frac{\text{Var}(\hat{p}_1)}{\text{Var}(\hat{p}_2)} \) and the correlation coefficient between \(\hat{p}_1 \) and \(\hat{p}_2 \) is \(\rho \). If we define another estimator as

\[
\hat{p}_3 = \frac{(1-\rho \sqrt{e})\hat{p}_1 + (e-\rho \sqrt{e})\hat{p}_2}{(1+e-2\rho \sqrt{e})},
\]

then show that \(\rho = \sqrt{e} \).

Q.No.3: (3+3+3 marks) Show that the following densities belong to the exponential family and give the sufficient statistic(s) for the unknown parameter(s).

(a) Negative Binomial distribution

\[
f(x; \theta) = \binom{x + r - 1}{r - 1} p^r (1 - p)^x; \quad x = r, r + 1, r + 2, \ldots
\]

(b) Weibull distribution

\[
f(x; \theta) = \frac{k}{\lambda} \left(\frac{x}{\lambda} \right)^{k-1} e^{-\left(x/\lambda \right)^k}; \quad x > 0
\]

(c) Beta Distribution

\[
f(x; \theta) = \frac{1}{\beta(a,b)} x^{a-1} (1 - x)^{b-1}; \quad 0 < x < 1
\]

where \(\beta(a,b) \) is the beta function defined as \(\beta(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \).
Q.No.4: (7 marks) In a sequence of \(n \) Bernoulli trials with \(p \) as the probability of success, \(x \) successes were observed. Show that \(\hat{p}\hat{q}^2 \) is a biased estimator of \(pq^2 \) but the bias \(\to 0 \) as \(n \to \infty \), where \(q = 1 - p \), \(\hat{p} = \frac{x}{n} \) and \(\hat{q} = 1 - \hat{p} \).

Q.No.5: (6+4 marks)
(a) Suppose \(X_1, X_2, ..., X_n \) form a random sample from the density function \(f(x; \theta) \), subject to a number of regularity conditions. Find the Cramer-Rao lower bound for the variance of a biased estimator of \(g(\theta) \) where \(g(\theta) \) is some function of the unknown parameter \(\theta \).
(b) Show that
\[
E \left(\frac{\partial}{\partial \theta} \log L(x; \theta) \right)^2 = -E \left(\frac{\partial^2}{\partial \theta^2} \log L(x; \theta) \right)
\]

Q.No.6: (5 marks) If \(X_1, X_2, ..., X_n \) is a random sample from Rayleigh distribution with probability density function \(f(x; \theta) = \frac{x}{\theta^2} e^{-\frac{x^2}{2\theta^2}}; x > 0 \). Find whether there exist any Minimum Variance Bound (MVB) estimator for \(\theta \). If yes, find its sampling variance as well.

Q.No.7: (8+2 marks) Suppose that 2-dimensional vector \((x_1, y_1), (x_2, y_2), ..., (x_n, y_n) \) form a random sample from a bivariate normal distribution with probability density function:
\[
f(x; \theta) = \frac{1}{2\pi \sigma_1 \sigma_2 \sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left(\left(\frac{x-\mu_1}{\sigma_1} \right)^2 + \left(\frac{y-\mu_2}{\sigma_2} \right)^2 - 2\rho \left(\frac{x-\mu_1}{\sigma_1} \right) \left(\frac{y-\mu_2}{\sigma_2} \right) \right)}; \ -\infty < x < \infty \quad \text{and} \quad -\infty < y < \infty
\]
where \(\mu_1 \) and \(\mu_2 \) are the unknown means of \(X \) and \(Y \) respectively, \(\sigma_1^2 \) and \(\sigma_2^2 \) are the known variances of \(X \) and \(Y \) respectively and the correlation coefficient (\(\rho \)) between \(X \) and \(Y \) is also known.
(a) Find the Maximum Likelihood Estimators (MLE) of \(\mu_1 \) and \(\mu_2 \).
(b) Comment on the 4 basic properties (unbiasedness, consistency, sufficiency, efficiency) of the estimators found in part (a).

Q.No.8: (7 marks) Suppose that \(Y \) follows exponential distribution with probability density function
\[
f(y; \theta) = \theta e^{-\theta y}; y > 0. \text{ We observe } y_1 = 3, y_2 = 6, y_3 = 10 \text{ and the prior of } \theta \text{ is } h(\theta) = \frac{3\theta^2}{19} ; 2 < \theta < 3. \text{ Find the expression for Bayes’ estimate of } \theta.
\]

With the Best Wishes