Q.No.1: (5+5+5+5=20 points)
(a) If \(k \) trials conducted are of Bernoullian type following binomial distribution, find the maximum likelihood estimate of \(p \).

(b) Find the maximum likelihood estimate of the parameter \(\theta \) of the following distribution,
\[
f(x; \theta) = \frac{1}{2} e^{-|x-\theta|}
\]
\(-\infty < x < \infty \) and \(-\infty < \theta < \infty\).

(c) Estimate the parameter \(\beta \) of the distribution \(f(x; \beta) = \beta e^{-\beta x} \) for \(0 \leq x \leq \infty \), by the method of moments.

(d) Find Bayes estimator of the single parameter \(\theta \) of the Poisson distribution \(f(x; \theta) = e^{-\theta} \theta^x / x! \) for \(x = 0, 1, 2, \ldots, n \) when it is known that the prior distribution of \(\theta \) is gamma distribution \(g(\theta) = \frac{\beta^\alpha}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta \theta} \) for \(0 \leq \theta \leq \infty \).

Q.No.2: (7 points) Consider a distribution having a pmf of the form \(f(x; \theta) = \theta^x (1 - \theta)^{1-x} \) for \(x = 0, 1 \). Let \(H_0: \theta = \frac{1}{20} \) against \(H_1: \theta > \frac{1}{20} \). Use the central limit theorem to determine the sample size \(n \) of a random sample so that the uniformly most powerful test of \(H_0 \) against \(H_1 \) has a power function \(\gamma(\theta) \), with approximately \(\gamma \left(\frac{1}{20} \right) = 0.05 \) and \(\gamma \left(\frac{1}{10} \right) = 0.90 \).

Q.No.3: (8 points) Let \(X_1, X_2, \ldots, X_n \) denote a random sample from a gamma distribution \(f(x; \theta) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \) for \(x > 0 \), \(\mu = \alpha/\beta \) and \(\sigma^2 = \alpha/\beta^2 \) with \(\alpha = 2 \) and \(\beta = \theta \). Let \(H_0: \theta = 1 \) against \(H_1: \theta > 1 \). Show that the likelihood ratio test leads to the same critical region as that given by the Neyman-Pearson lemma. Also find the value of \(k \) using \(\alpha = 0.05 \).

With the Best Wishes