King Fahd University of Petroleum & Minerals
Department of Mathematics & Statistics
Math 201 Major Exam I
The Third Semester of 2014-2015 (143)
Time Allowed: 120 Minutes

Name: ___________________________ ID#: ________________________
Section/Instructor: _____________________ Serial #: ________________________

- Mobiles and calculators are not allowed in this exam.
- Provide all necessary steps required in the solution.

<table>
<thead>
<tr>
<th>Question #</th>
<th>Marks</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
Q:1 Consider the parametric equations $x = 2 + \sin t$, $y = \cos t + 1$.

(a) (5 points) Eliminate the parameter to find a cartesian equation.

(b) (5 points) Sketch the curve for $0 \leq t \leq \pi$ and mark the direction in which the curve is traced as t increases.
Q:2 (a) (7 points) Find the equation of tangent line to the curve \(t = \ln(x - t), \quad y = t e^t \) at \(t = 0 \).

(b) (7 points) Find the length of the curve

\[
\begin{align*}
x &= 2t - 2\sin t, & y &= 2 - 2\cos t, & 0 \leq t \leq 2\pi.
\end{align*}
\]
Q:3 (a) (6 points) Write the polar equation $r = (\ln r - \ln \cos \theta) \csc \theta$ in cartesian coordinates.

(b) (6 points) Graph the sets of points whose polar coordinates satisfy the following conditions

$$1 \leq r \leq 2 \text{ and } \frac{2\pi}{3} \leq \theta \leq \frac{5\pi}{6}.$$
Q:4 (a) (6 points) Identify the symmetries of the curve $r^2 = 4 \cos \theta$.

(b) (6 points) Find the slope of the curve $r = 1 + \sin \theta$ at $\theta = \frac{\pi}{3}$.
Q:5 (14 points) Find the area of the region that lies inside both curves $r = \cos 2\theta$ and $r = \sqrt{3} \sin 2\theta$ for $0 \leq \theta \leq \frac{\pi}{2}$.
Q:6 (a) (6 points) Find an equation of the sphere that passes through the point $(2, -4, 3)$ and has center $(1, 2, 5)$. Describe the intersection of this sphere with the xz-plane.

(b) (6 points) If the angle between two unit vectors \vec{a} and \vec{b} is $\frac{\pi}{3}$, then find the value of $|3\vec{a} - 2\vec{b}|$.

Q:7 (6 points) Find the vector projection of \(\vec{a} = \langle 1, 1, 1 \rangle \) onto \(\vec{b} = \langle 2, 3, 4 \rangle \) and the scalar component of \(\vec{a} \) in the direction of \(\vec{b} \).

(b) (8 points) Find a unit vector perpendicular to the plane P(1, -1, 0), Q(2, 1, -1) and R(-1, 1, 2).
Q:8 (10 points) Find the volume of the parallelepiped determined by the vectors \overrightarrow{AB}, \overrightarrow{AC}, and \overrightarrow{AD} where $A(1, 0, 0)$, $B(0, 2, 0)$, $C(0, 0, 3)$, $D(0, 1, 3)$.