King Fahd University of Petroleum & Minerals
Department of Mathematics & Statistics
Math-280, Term-151
Major Exam 2, Time Allowed: 2 hours

Name: ID:

SHOW ALL YOUR WORK

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
<th>Total Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
Question 1: Let V be a vector space. Show that
 a) the element 0 in V is unique.
 b) $\alpha 0 = 0$ for each scalar α.
Question 2: Let S_1 and S_2 be two subspaces of a vector space V. Determine whether the following sets are subspaces of V.

a) $S_1 \cap S_2$

b) $S_1 \setminus S_2 = \{ v \in S_1 : v \notin S_2 \}$.
Question 3: Check for linear independence

a) \[
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}
\] in \(\mathbb{R}^{2 \times 2} \).

b) \(x_2 - x_1, \quad x_3 - x_2, \quad x_3 - x_1 \) in \(\mathbb{R}^n \) where \(x_1, x_2, x_3 \) are linearly independent vectors in \(\mathbb{R}^n \).
Question 4:

a) Find a basis for the subspace S of \mathbb{R}^4 that consists of all vectors of the form $(a-2b,a-b-3c,b,a)^T$, where $a,b,c \in \mathbb{R}$. What is the dimension of S?

b) In $C[-\pi,\pi]$, what is the dimension of $\text{Span}(1,\cos x,\sin^2(\frac{x}{2}))$.
Question 5: Let $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$, $u_3 = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$.

a) Show that the set $B_1 = \{u_1, u_2, u_3\}$ forms a basis for \mathbb{R}^3.

b) Find the transition matrix from the $B_2 = \{e_1, e_2, e_3\}$ to B_1.

c) Using part b) find $[v]_{B_1}$ where $v = (3, 2, -5)^T$.
Question 6: For the matrix

\[A = \begin{pmatrix}
3 & 1 & -3 & 4 \\
-1 & 2 & 1 & -2 \\
-3 & 8 & -4 & 2 \\
\end{pmatrix} \]

find

a) a basis for
i. the row space of \(A \),
ii. the column space of \(A \), and
iii. the null space of \(A \).

b) \(\text{rank}(A) \), \(\text{nullity}(A) \).