1. State and prove the "Sandwitch Theorem" for sequences.

2. If \(x > 0 \), prove that \(x^{n+1} + \frac{1}{x^{n+1}} > x^n + \frac{1}{x^n} \) for any \(n \in \mathbb{N} \).

3. Let \(S \) be a nonempty subset of real numbers, and let \(w = \inf S \).
 Prove that there exists a sequence \((s_n)_{n \in \mathbb{N}} \) of elements of \(S \) such that
 \[
 w = \lim_{n \to +\infty} s_n.

 \]
 This sequence is called a minimizing sequence.

4. Assume that \(x_1 \) and \(x_2 \) are arbitrary real numbers with \(x_1 < x_2 \).
 Show that the sequence \((x_n)_{n \in \mathbb{N}} \), defined by \(x_{n+1} = \frac{1}{2} (x_{n-1} + x_{n-2}) \)
 for \(n > 2 \), is convergent and find its limit.

5. Let \((A_n)_{n \in \mathbb{N}} \) be a sequence of nonempty subsets of \(\mathbb{R} \) such that
 (i) \(A_1 \supset A_2 \supset A_3 \supset \ldots \), and
 (ii) \(|x - y| \leq \frac{1}{n} \) for all \(x, y \in A_n \).
 Let \((a_n)_{n \in \mathbb{N}} \) be a sequence in \(\mathbb{R} \) such that \(a_n \in A_n \) for each \(n \).
 Prove that \((a_n)_{n \in \mathbb{N}} \) is convergent.