Problem 1 (25 points):

(a) Give an example of a planar graph which isomorphic to its dual graph.

(b) Find the number of distinct labeling of the graph in the figure.

(c) Give a maximal planar graph of order 6
Problem 3 (25 points): Either prove or disprove each of the following statements. If a statement is true sketch the proof, and if it is false, give a counter example.

(a) Every induced subgraph of the complete graph K_n is complete.

$G = K_4 - e$

(b) If k is an odd integer and G is a k-regular graph of size m, then m is a multiple of k.

(c) If G_1 and G_2 are regular graphs, then the join $G_1 \lor G_2$ is regular.

(d) If the graph G has only two vertices of odd degree, then they must be connected by a path.

(e) Any connected graph has only one central vertex.
Problem 4 (29 points):

1) Let G is a graph of order $2n$ and size m. If $\delta(G) \geq n$ for each vertex v, prove that G is connected.

2) Prove that if G is an acyclic graph of order n and size m such that $m = n - 1$, then G is a tree.
3) Let G be a connected graph of order n ($n \geq 3$). Prove that there is an orientation of G in which no directed path has length 2 if and only if G is bipartite.

4) Apply Kruskal’s algorithm to find a minimum spanning tree T in the weighted graph G. Show how this tree is constructed. Also find $w(T)$.

![Graph Diagram]