1. The sum of the critical numbers of the function \(f(x) = \frac{x - 1}{x^2 + 4} \) is

a) 2
b) 3
c) 0
d) 4
e) 5

2. If \(2x + 1 \leq h(x) \leq x^4 - x^2 + 3 \) for all \(x \in (-2, 2) \), then \(\lim_{x \to 1} h(x) = \)

a) 3
b) 2
c) 4
d) 0
e) Does not exist
3. The largest value for δ, such that if $|x - 2| < \delta$ then $|4x - 8| < 0.01$, is

a) 0.0025
b) 0.025
c) 0.25
d) 0.01
e) 0.0001

4. Let $f(x) = \begin{cases}
x^2 - a, & x \leq a \\
2, & a < x < b \\
3x + b & x \geq b
\end{cases}$ be a continuous function everywhere with $a \neq b$.
Then $a + b =$

a) 1
b) $\frac{1}{4}$
c) 2
d) $\frac{3}{4}$
e) 0
5. If \(f(x) = \frac{x^2 - 1}{x^2 + 1} \), then \(f'(1) = \\

a) 1 \\
b) \frac{1}{4} \\
c) 4 \\
d) 2 \\
e) \frac{1}{2} \\

6. A particle moves according to the law of motion \(s(t) = \cos\left(\frac{\pi t}{4}\right) \) where \(s \) is measured in meters and \(t \) is measured in seconds. The total distance travelled during the first 8 seconds is

a) 4 m \\
b) 2 m \\
c) 8 m \\
d) 6 m \\
e) 10 m
7. Which one of the following statements is TRUE about \(f(x) = \begin{cases}
\ x + 2 & \text{if } x < 0 \\
\ e^x & \text{if } 0 \leq x \leq 1 \\
\ 2 - x & \text{if } x > 1
\end{cases} \)?

a) \(f(x) \) is continuous from the left at \(x = 1 \)
b) \(f(x) \) is continuous at \(x = 0 \)
c) \(f(x) \) is differentiable at \(x = 1 \)
d) \(f(x) \) is continuous from the left at \(x = 0 \)
e) \(f(x) \) is continuous from the right at \(x = 1 \)

8. Suppose that \(a^{x^2}y + x\sqrt{y} = a + 1 \) where \(a > 0 \). Then \(\frac{dy}{dx} \) at the point \((1, 1)\) is equal to

a) None of the above (this answer was the last choice)
b) \(\ln a \)
c) \(a \)
d) \(5 \)
e) \(-2 \)
9. If \(f(1) = -1 \) and \(f'(x) \leq 2 \) for all \(x \). The largest possible value of \(f(2) \) is

a) 1
b) 0
c) 2
d) -1
e) -2

10. The \(x \)-intercept of the tangent line to the curve \(y = x + \tan x \) at the point \((\pi, \pi)\) is

a) \(\pi/2 \)
b) \(\pi/4 \)
c) \(2\pi/3 \)
d) \(-\pi \)
e) \(\pi/6 \)
11. \(\lim_{{x \to 0^+}} \left[\frac{2}{\pi} \tan^{-1}(\ln x) \right] = \)

a) \(-1\)
b) \(\frac{\pi}{2}\)
c) 0
d) \(\infty\)
e) \(-\infty\)

12. \(\lim_{{x \to \infty}} \left(\sqrt{x^2 + ax} - \sqrt{x^2 + bx} \right) = \)

a) \(\frac{a - b}{2}\)
b) \(a - b\)
c) \(\frac{a + b}{2}\)
d) \(a + b\)
e) 0
13. If \(f''(x) = x^{-2}, \ x > 0, \ f(1) = 0, \) and \(f(2) = 0, \) then

a) \(f(x) = -\ln x + (\ln 2) x - \ln 2 \)
b) \(f(x) = \frac{-1}{x} \)
c) \(f(x) = \frac{1}{x} \)
d) \(f(x) = -\ln x - (\ln 2)x + \ln 2 \)
e) \(f(x) = -\ln x - (\ln 2)x - \ln 2 \)

14. \(\lim_{x \to 1} \left[\frac{\ln(x^3)}{2x-2} \right] = \)

a) \(\frac{3}{2} \)
b) \(\frac{1}{2} \)
c) \(\frac{1}{3} \)
d) \(\frac{2}{3} \)
e) 1
15. If \(f'(x) = (x^2 + x + 1)^4 (x - 3)^3 (x - 1)(x^2 - x + 1)^6 \), then \(f \) is decreasing on

a) \((1, 3)\)
b) \((-\infty, 1)\)
c) \((3, \infty)\)
d) \((-\infty, 1) \cup (3, \infty)\)
e) \((-\infty, \infty)\)

16. If \(f' \) is continuous everywhere, \(f(7) = 0 \) and \(f'(7) = 2 \), then

\[
\lim_{x \to 0} \left[\frac{f(7 + 5x) + f(7 + 8x)}{x} \right] =
\]

a) 26
b) 40
c) 49
d) 14
e) 10
17. If \(x_1 = 0 \) is an approximation to one root of the equation \(x^3 = 1 - x \), then the approximation \(x_3 \) given by Newton's Method is

a) \(\frac{3}{4} \)

b) \(\frac{1}{2} \)

c) \(\frac{1}{4} \)

d) \(\frac{3}{2} \)

e) \(\frac{2}{5} \)

18. \(\lim_{x \to 1^+} [\ln(x^\pi - 1) - \ln(x^e - 1)] = \)

a) \((\ln \pi) - 1 \)

b) 0

c) \(+\infty \)

d) \(\ln (\pi - e) \)

e) 1
19. If \(\tanh x = \frac{12}{13} \), then \(5 \sinh x + 13 \sech x = \)

a) 17
b) 18
c) 60
d) 25
e) 22

20. If \(\lim_{x \to 0} \left(\frac{\sqrt{Mx + N} - 2}{x} \right) = 1 \) then

a) \(M = N \)
b) \(M \neq N \)
c) \(M > N \)
d) \(M < N \)
e) \(M \) and \(N \) cannot be found
21. If \(y = ax + b \) and \(y = cx + d \) are equations of lines that are tangent to the curve \(y = 1 + x^3 \) and parallel to the line \(12x - y = 1 \), then \(b + d = \)

a) 2
b) 4
c) 6
d) 12
e) 0

22. Let \(g(x) = x^{1/3}(x + 4) \). Which one of the following statements is TRUE?

a) \(g \) is concave downward on \((0, 2) \)
b) \(g \) is concave upwardward on \((-1, \infty) \)
c) \(g \) is concave downward on \((-\infty, 0) \)
d) \(g \) is concave upward on \((0, \infty) \)
e) \(g \) is concave downward on \((2, 4) \)
23. The point, at which the slant asymptote and the vertical asymptote of the graph of
\(f(x) = \frac{3x^2 + x - 2}{2x + 6} \) intersect, is

a) \((-3, -\frac{17}{2})\)

b) \((-3, \frac{3}{2})\)

c) \((-3, -4)\)

d) \((0, 0)\)

e) \((3, \frac{17}{2})\)

24. Suppose \(f(x) = x^a (1 - x)^b \), where \(0 \leq x \leq 1\) and both of \(a\) and \(b\) are positive numbers. The maximum value of \(f\) equals to

a) \(\frac{a^ab^b}{(a + b)^{a+b}}\)

b) \(\frac{a}{a + b}\)

c) 1

d) \(\frac{a + b}{a^a + b}\)

e) \(\frac{b^b}{(a + 2b)^b}\)
25. The surface area of a sphere was found $36\pi \text{ cm}^2$ with possible error in the measurement of its radius 0.1 cm. Using differentials, the maximum possible error in computing its surface area is (Hint: Surface area of sphere is $4\pi r^2$)

 a) $\frac{12\pi}{5}$
 b) $\frac{9\pi}{25}$
 c) $\frac{7\pi}{5}$
 d) $\frac{5\pi}{36}$
 e) $\frac{6\pi}{7}$

26. Which one of the following statements is TRUE

 a) If $f'(x)$ exists at $x = r$, then $\lim_{{x \to r}} f(x) = f(r)$
 b) If $|f|$ is a continuous function at a, then f is a continuous function at a
 c) $\lim_{{x \to 4}} \left(\frac{2x}{x-4} - \frac{8}{x-4} \right) = \lim_{{x \to 4}} \left(\frac{2x}{x-4} \right) - \lim_{{x \to 4}} \left(\frac{8}{x-4} \right)$
 d) If $\lim_{{x \to 5}} f(x) = 0$ and $\lim_{{x \to 5}} g(x) = 0$, then $\lim_{{x \to 5}} \left(\frac{f(x)}{g(x)} \right)$ doesn’t exist
 e) If $f(1) > 0$ and $f(3) < 0$ then there exists a number $c \in (1, 3)$ such that $f(c) = 0$
27. The area of the largest rectangle inscribed in a semi-circle with radius \(r \) is

a) \(r^2 \)
b) \(\frac{r^2}{2} \)
c) \(\frac{3r^2}{4} \)
d) \(\frac{\pi r^2}{2} \)
e) \(r \)

28. The values of the constants \(a, b, c \) and \(d \), so that \(f(x) = ax^3 + bx^2 + cx + d \) has a local maximum at the point \((0, 0)\) and a local minimum at the point \((1, -1)\), are as follows

a) \(a = 2, b = -3, c = 0, \) and \(d = 0 \)
b) \(a = -2, b = 1, c = 1, \) and \(d = 0 \)
c) \(a = 1, b = -1, c = 2, \) and \(d = 0 \)
d) \(a = 0, b = 2, c = -1, \) and \(d = 0 \)
e) \(a = -2, b = 0, c = 0, \) and \(d = 1 \)