(1) [10 points] Let \(\{ R_i \}_{i \in \Delta} \) be a family of rings and consider the ring \(R := \prod_{i \in \Delta} R_i \). Prove that if \(\Delta \) is finite, then every ideal of \(R \) has the form \(\bigoplus_{i \in \Delta} I_i \) for some ideal \(I_i \) of \(R_i \) (\(i \in \Delta \)). Is this fact true if \(\Delta \) is infinite? (Justify)

(2) [10 points] Let \(R \) be a ring. Prove:
\[
0 \to Y' \to Y \to Y'' \text{ exact} \iff 0 \to \text{Hom}_R(X, Y') \to \text{Hom}_R(X, Y) \to \text{Hom}_R(X, Y'') \text{ exact}, \ \forall X
\]

(3) [10 points] Let \(R \) be a commutative ring and let \(M \) be an \(R \)-module. Prove the implications:
\[
M \text{ free} \Rightarrow M \text{ projective} \Rightarrow M \text{ flat}
\]
and provide explicit counterexamples for the converses.

(4) [10 points] Prove that if a short exact sequence of modules \(0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0 \) splits, then:
\begin{enumerate}

 (a) [4 points] \(M = \text{Ker}(g) \oplus \text{Im}(f) \), where \(g \circ f = 1_{M''} \).

 (b) [4 points] \(M = \text{Ker}(\psi) \oplus \text{Im}(f) \), where \(\psi \circ f = 1_{M''} \).

 (c) [2 points] \(M \cong M' \oplus M'' \).
\end{enumerate}

(5) [15 points] Let \(R \) be an integral domain containing a field \(k \). Prove that if \(R \) is a finite dimensional vector space over \(k \), then \(R \) is a field.

(6) [20 points] Let \(R \) be a commutative ring. An \(R \)-module \(M \) is called faithfully flat if \(M \) is flat and \(M \otimes N = 0 \Rightarrow N = 0 \). Prove that the following conditions are equivalent:
\begin{enumerate}

 (i) \(M \) is faithfully flat;

 (j) \(M \) is flat and if \(u: E \to F \) is an \(R \)-map with \(u \neq 0 \), then \(T_M(u): M \otimes E \to M \otimes F \) is also \(\neq 0 \);

 (k) \(M \) is flat and \(pM \neq M \) for all maximal ideals \(p \) of \(R \);

 (l) \(N' \to N \to N'' \) is exact \(\iff M \otimes N' \to M \otimes N \to M \otimes N'' \) is exact.
\end{enumerate}
[Each implication = 5 points]

(7) [25 points] Let \(R \) be a commutative ring and \(E, F \) two \(R \)-modules. We say that \(E \) is \(F \)-flat if:
\[
0 \to F' \to F \text{ exact} \iff 0 \to E \otimes F' \to E \otimes F \text{ exact}
\]
\begin{enumerate}

 (a) [5 points] Prove: \(E \) is \(F \)-flat \(\iff \) \(E \) is \(G \)-flat for every submodule \(G \) of \(F \). [Use Snake Lemma]

 (b) [5 points] Prove: \(E \) is \(F \)-flat \(\Rightarrow \) \(E \) is \((F/G) \)-flat for every submodule \(G \) of \(F \). [Use Snake Lemma]

 (c) [5 points] Assume \(F = F_1 \oplus F_2 \). Prove: \(E \) is \(F \)-flat (\(i=1, 2 \)) \(\iff \) \(E \) is \(F \)-flat. [Use Snake Lemma]

 (d) [5 points] Assume \(F = \bigoplus_{i \in \Delta} F_i \). Prove: \(E \) is \(F \)-flat (\(\forall i \in \Delta \)) \(\iff \) \(E \) is \(F \)-flat. [Use (c)]

 (e) [5 points] Prove: \(E \) is flat \(\iff \) \(E \) is \(R \)-flat. [Use (d) and (b)]