1. Use polar coordinates, find the area of the region common to the curves, \(r = 1 + \sin \theta \) and \(r = 1 \).

2. Let \(\mathbf{u} = \langle 1, 2, 3 \rangle \), \(\mathbf{v} = \langle 1, 0, 1 \rangle \), \(\mathbf{w} = \langle -1, 1, -1 \rangle \).
 (a) Find the angle between \(\mathbf{u} \) and \(\mathbf{v} \).
 (b) Are \(\mathbf{u}, \mathbf{v}, \mathbf{w} \) co-planar?
 (c) Find the scalar projection of \(\mathbf{w} \) onto \(\mathbf{u} \), \(\text{Comp}_\mathbf{u} \mathbf{w} \).
 (d) Find \(\text{Proj}_\mathbf{u} \mathbf{v} \).
 (e) Find the unit vector which orthogonal to both \(\mathbf{v} \) and \(\mathbf{w} \)? What are the direction angles?

3. Find the work done by a force \(\mathbf{F} = 4 \mathbf{i} - 3 \mathbf{j} + 8 \mathbf{k} \) N that moves an object from point \((0, 5, 4)\) to \((4, 14, 10)\) along a straight line (meters).

4. Let \(\mathbf{x} \) be a vector with length 5 that starts at the origin and rotates the \(x-z \)-plane. Find the maximum and minimum values of the length of \(\mathbf{x} \times \mathbf{y} \). In what direction does \(\mathbf{x} \times \mathbf{y} \) point?