1. Let \(h(x) = \frac{g(x)}{f(x) + g(x)} \). If \(f(4) = 1 \), \(g(4) = 2 \), \(f'(4) = 3 \), and \(g'(4) = -3 \), then \(h'(4) = \)

(a) -1
(b) 0
(c) -3
(d) 3
(e) -2

2. A particle moves in a straight line and has acceleration given by \(a(t) = 4t + 10 \). Its initial velocity is \(v(0) = -3 \) feet/sec and its initial displacement \(s(0) = 5 \) feet, its position is given by

(a) \(s(t) = \frac{2}{3} t^3 + 5t^2 - 3t + 5 \)
(b) \(s(t) = \frac{2}{3} t^5 + 5t^2 + 3t - 5 \)
(c) \(s(t) = 3t^3 + 10t^2 - 3t + 5 \)
(d) \(s(t) = 3t^3 + 10t^2 + 3t - 5 \)
(e) \(s(t) = \frac{2}{3} t^3 + 5t^2 - 3t \)
3. Let \(f(x) = cx + \ln(\cos x) \) where \(c \) is a constant. The value of \(c \) such that \(f'(\frac{\pi}{4}) = 6 \) equals to

(a) 7
(b) 6
(c) −2
(d) 1
(e) 0

4. \(\tanh(\ln x) = \)

(a) \(\frac{x^2 - 1}{x^2 + 1} \)
(b) \(\frac{x^2 + 1}{x^2 - 1} \)
(c) \(\frac{\ln x^2 - 1}{\ln x^2 + 1} \)
(d) \(\frac{x - 1}{x + 1} \)
(e) 0
5. Suppose f'' is continuous on $(-\infty, \infty)$. If $f'(2) = 0$ and $f''(2) = -5$ then

(a) f has a local maximum at $x = 2$

(b) f has a local minimum at $x = 2$

(c) f has a point of inflection at $x = 2$

(d) f is increasing at $x = 2$

(e) f is concave upward at $x = 2$

6. The sum of all positive real numbers a, that makes the function

$$f(x) = \begin{cases}
ax + 3 & \text{if } x > a \\
\frac{x^2 - x + 2a^2}{a} & \text{if } x \leq a
\end{cases}$$

continuous everywhere, is

(a) $\frac{3}{2}$

(b) 1

(c) $\frac{5}{2}$

(d) 2

(e) 3
7. If \(\cosh x = \frac{5}{3} \) and \(x > 0 \), then

(a) \(\tanh x = \frac{4}{5} \)

(b) \(\coth x = \frac{3}{5} \)

(c) \(\sinh x = \frac{3}{4} \)

(d) \(\text{csch} \, x = \frac{4}{3} \)

(e) \(\text{sech} \, x = 1 \)

8. Let \(f(x) = x\sqrt{9 - x^2} \) on the interval \([-3, 3]\). The function \(f \) attains its absolute maximum value at

(a) \(x = \frac{3}{\sqrt{2}} \)

(b) \(x = 3 \)

(c) \(x = -\frac{3}{\sqrt{2}} \)

(d) \(x = -3 \)

(e) \(x = 0 \)
9. The critical number(s) for the function \(f(x) = x^2 \ln x \)
is(are)

(a) \(x = \frac{1}{\sqrt{e}} \)

(b) \(x = 1 \)

(c) \(x = \sqrt{e} \)

(d) \(x = \frac{1}{e} \)

(e) \(x = 1 \) and \(\sqrt{e} \)

10. \(\lim_{x \to 0} \left[\frac{\sqrt{1 + 2x} - \sqrt{1 - 4x}}{x} \right] = \)

(a) 3

(b) 6

(c) 2

(d) 1

(e) 0
11. \(\lim_{x \to 1^+} \left[\ln(x^8 - 1) - \ln(x^4 - 1) \right] = \)

(a) \(\ln 2 \)
(b) \(\ln \left(\frac{1}{2} \right) \)
(c) \(\ln 32 \)
(d) \(\ln \left(\frac{1}{32} \right) \)
(e) 0

12. If \(y = \ln (1 + \ln x) \) and \(x > e \), then \(y'' = \)

(a) \(\frac{-2 - \ln x}{x^2(1 + \ln x)^2} \)
(b) \(\frac{-1}{x(1 + \ln x)} \)
(c) \(\frac{1}{x(1 + \ln x)} \)
(d) \(\frac{2 + \ln x}{x^2(1 + \ln x)^2} \)
(e) \(\frac{1}{1 + \ln x} \)
13. The area of the largest rectangle that can be inscribed in a circle of radius 1 is

(a) 2
(b) \(\frac{2}{\sqrt{2}} \)
(c) 4
(d) \(2 \sqrt{2} \)
(e) \(2 \pi \)

14. If \(y \sec x = x \tan y + 1 \), then \(\frac{dy}{dx} \) when \(x = 0 \) equals

(a) \(\tan 1 \)
(b) \(\frac{\sec 1}{\tan 1} \)
(c) \(\sec 1 \)
(d) \(\frac{1 + \tan 1}{\sec 1} \)
(e) 1
15. The linearization $L(x)$ of the function $f(x) = \sin x$ at $a = \pi/6$ is

(a) $L(x) = \frac{1}{2} + \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{6} \right)$

(b) $L(x) = \frac{\sqrt{3}}{2} + \frac{1}{2} \left(x - \frac{\pi}{6} \right)$

(c) $L(x) = 1 + \left(x - \frac{\pi}{6} \right)$

(d) $L(x) = 1 + x$

(e) $L(x) = x - \frac{\pi}{6}$

16. If $y = \sqrt{\sin x + y}$, then $\frac{dy}{dx} =$

(a) $\frac{\cos x}{2y - 1}$

(b) $\frac{\cos x}{2y}$

(c) $\frac{\sin x}{2y - 1}$

(d) $\frac{\cos x}{1 - y}$

(e) $\frac{\cos x}{1 - 2y}$
17. Which one of the following statements is **TRUE**?

(a) The derivative of a rational function is a rational function

(b) If \(f \) and \(g \) are differentiable, then \(\frac{d}{dx}[f(x)g(x)] = f'(x)g'(x) \)

(c) If \(y = e^2 \), then \(y' = 2e \)

(d) \(\frac{d}{dx} (10^x) = x \cdot 10^{x-1} \)

(e) \(\frac{d}{dx} (\tan^{-1}(2x)) = \frac{2}{1-2x} \)

18. The slope of the tangent line to the graph of \(y = (x^2+1)^3 \cdot e^{x^2} \) at \(x = 1 \) equals

(a) \(40e \)

(b) \(5 \)

(c) \(20e \)

(d) \(8e \)

(e) \(5e \)
19. If \(f(4) = -1 \) and \(f'(x) \geq 5 \) for \(2 \leq x \leq 4 \), then the largest possible value of \(f(2) \) is

(a) \(-11\)
(b) \(-1\)
(c) \(5\)
(d) \(-\frac{1}{5}\)
(e) \(-5\)

20. The graph of the derivative \(f' \) of a continuous function \(f \) is shown below, then which one of the following statements is TRUE?

![Graph of f']

(a) \(f \) has a local maximum at \(x = 2 \) and \(x = 6 \)
(b) \(f \) is increasing on the intervals \((0, 2), (4, 6), \) and \((6, 8)\)
(c) \(f \) has a local minimum at \(x = 4 \) and \(x = 6 \)
(d) \(f \) is decreasing on the intervals \((0, 2), (4, 6), \) and \((6, 8)\)
(e) \(f \) has an inflection point at \(x = 6 \)
21. Using a linear approximation (or differentials), the best estimation to $\sqrt[3]{1001}$ is $10 + B$. Then $B =$

(a) $\frac{1}{300}$

(b) $\frac{3}{10}$

(c) $\frac{1}{3}$

(d) $\frac{5}{300}$

(e) $\frac{1}{100}$

22. Let A and B be constants such that $y = A \sin x + B \cos x$ satisfies the equation $y'' + y' - 2y = \sin x$. Then

(a) $A = \frac{-3}{10}$ and $B = \frac{-1}{10}$

(b) $A = \frac{2}{5}$ and $B = \frac{3}{5}$

(c) $A = \frac{2}{3}$ and $B = \frac{5}{2}$

(d) $A = \frac{-1}{3}$ and $B = -1$

(e) $A = 1$ and $B = -1$
23. Which one of the following statements is **FALSE**?

(a) If \(f'(c) = 0 \), then \(f \) has a local maximum or minimum at \(c \)

(b) If \(f \) has a local minimum at \(c \) and \(f''(c) \) exits, then \(f'(c) = 0 \)

(c) If \(f \) is differentiable and \(f(-1) = f(1) \), then there is a number \(c \) such that \(|c| < 1 \) and \(f'(c) = 0 \)

(d) There exists a function \(f \) such that \(f(x) > 0 \), \(f'(x) < 0 \), and \(f''(x) > 0 \) for all \(x \)

(e) If \(f \) and \(g \) are positive increasing functions on an interval \(I \), then \(fg \) is increasing on \(I \)

24. Which one of the following graphs represents the function \(f(x) = \frac{x^2 + 1}{x} \)?
25. Let \(f(x) = x^3 - 6x^2 + 9x + 1 \) and \(x \in [2, 4] \). If \(M \) is the absolute maximum value and \(m \) is the absolute minimum value, then \(M + m = \)

(a) 6
(b) 8
(c) 4
(d) 2
(e) 1

26. One inflection point of the graph of \(y = e^x \sin x \) on \([-\pi, \pi]\) is

(a) \(\left(\frac{\pi}{2}, e^{\frac{\pi}{2}} \right) \)
(b) \(\left(\frac{\pi}{6}, \frac{e^{\frac{\pi}{6}}}{2} \right) \)
(c) \(\left(\frac{\pi}{3}, \frac{\sqrt{3} e^{\frac{\pi}{2}}}{2} \right) \)
(d) \((\pi, 0) \)
(e) \((0, 0) \)
27. The graph of \(y = (1 - x) e^x \) is concave downward on

(a) \((-1, \infty)\)

(b) \((-1, 0)\)

(c) \((-\infty, 1)\)

(d) \((0, 1)\)

(e) \((-e, -1)\)

28. Suppose \(f(x) = \begin{cases}
2x & \text{for } x \leq 0 \\
2x - 2x^2 & \text{for } 0 < x < 2 \\
2 - 6x & \text{for } x \geq 2
\end{cases} \).

The function \(f \) is not differentiable when

(a) \(x = 2 \)

(b) \(x = 0 \)

(c) \(x \in (0, 2) \)

(d) \(x \in (-\infty, 0] \)

(e) \(x = 0 \) and \(x = 2 \)