Problem 1 (14 points): Define each of the following

(a) Nonseparable graph

(b) Eccentricity

(c) Center of a graph

(d) Tournament

(e) The Caley tree theorem

(f) A caterpillar

(g) A block in a graph
Problem 2 (26 points): Consider the graph G in the figure

(a) Find all cut-vertices (if any exists).

(b) Find all bridges of G (if any exists).

(c) Draw all blocks of G.

(d) Find the center of G.

(e) Find the girth of G.

(f) Find the radius of G.

(g) Find the cycle rank of G.

(h) Without finding the adjacency matrix $M = \left[m_{ij} \right]$ of G, find $m_{ij}^{(3)}$.
Problem 3 (20 points): Either prove or disprove each of the following statements. If a statement is true sketch the proof, and if it is false, give a counter example.

1) If G is a connected graph of order n and size m such that $m = n - 1$, then G is a tree.

2) Every nontrivial connected graph has at least two vertices which are not cut vertices.
3) In a connected graph G, if every vertex has even degree, then the graph has no bridges.

4) If G is a graph of order n such that $\delta(G) \geq \frac{n-1}{2}$, then G is connected.
Problem 4 (40 points):

(a) Construct the labeled tree having the Prufer code: (3,3,1,6,2,2).

(b) Show that the two graphs in the figure are not isomorphic.
(c) Prove that the score sequence s_i of a tournament of order n $(n \geq 3)$ satisfies the equation

$$\sum_{i=1}^{n} s_i^2 = \sum_{i=1}^{n} (n - 1 - s_i)^2.$$

(d) If G_1 and G_2 are regular graphs of degrees r_1 and r_2 respectively, then the Cartesian product $G_1 \times G_2$ is regular.