Show all your work. No credits for answers without justification.
Write neatly and eligibly. You may lose points for messy work.

Make sure that you have 9 pages with 7 questions.

<table>
<thead>
<tr>
<th>Page</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1 [16 marks]

(A) [8 marks] Define each of the following

(a) A 1-tough graph:

(b) The line graph of a plane graph G of order n and size m:

(c) Perfect Matching:

(d) Edge cover:

(B) [8 marks] State each of the following; define the terminology you use in the theorems:

a) The Matrix-Tree Theorem.

b) Kutatowski’s Theorem for planar graphs.

c) Menger’s Theorem.

d) Orthogonality relation between matrices of graphs.
Problem 2 [14 marks]

(A) [8 marks] Use Havel-Hakimi Theorem to determine whether the sequence is graphical or not. If yes draw the corresponding graph. (7,4,3,3,2,2,2,1)

(B) [6 marks] If exists, find a maximum matching and a minimum vertex cover in the following graph.
Problem 3 [18 marks]

(A) [6 marks] Determine the connectivity and the edge-connectivity of the graph from the picture.

(B) [12 marks] For the graphs G_1 and G_2 from the picture, prove non-planarity or provide a planar embedding.
Problem 4 [18 marks]

(A) [6 marks]: Determine whether the given graph is Hamiltonian. If it is, find a Hamiltonian cycle. If it is not, prove it is not.

(B) [12 marks] Consider the network with source s and sink (terminal) t, and with the given capacity. Find a maximum flow. Justify your answer.
Problem 5 [22 marks]

(A) [12 marks] Let \(G \) be a graph of order \(n > 4 \) such that \(d(v) \geq \frac{n-1}{2} \) for all vertices \(v \) of \(G \). Prove that:

(a) \(G \) is connected.

(b) \(G \) contains a cycle.

(c) \(diam(G) \leq 2 \).

(d) \(G \) contains a Hamiltonian path.

(B) [10 marks] Answer each of the following. Sketch The graph if possible.

(a) The crossing number of \(K_{1,2,3} \) is equal to: ____

(b) A maximal outer planar graph of order \(n \) must have size: __

(c) Find all connected graphs \(G \) where \(G \cong L(G) \).

(d) Find a connected plane graph \(G \) which is isomorphic to its dual \(G^* \)

(e) If \(P_n \) is a path of order \(n \) (\(n \geq 2 \)), then \(|Aut(P_n)| = ____ \)
Problem 6 [20 marks]
(A) [10 marks] In a village there are three schools with \(n \) students in each of them. Every student from any of the schools is on speaking terms with at least \(n + 1 \) students from the other two schools. Show that we can find three students, no two from the same school, who are on speaking terms with each other.

(B) [10 marks] Consider the digraph \(G \) with the spanning tree \(T = \{e_1, e_3, e_4\} \).

(a) Find the fundamental cutset matrix \(Q_f \) with respect to \(T \).

(b) Find the fundamental circuit matrix \(B_f \) with respect to \(T \).

(c) Arrange the columns of both \(Q_f \) and \(B_f \) in the same edge order and calculate \(B_f Q_f^t \).
Problem 7 [32 marks] For each of the following statements decide if it is true or false. Give a succinct explanation.

1. Every 3-regular graph has a perfect matching.

2. There exists a 6-connected planar graph.

3. Every connected graph of order n and size $n - 1$ is a tree.

4. The complete graph K_{2n+1} can be factored into Hamiltonian paths.
5. If a graph G has exactly two vertices u and v of odd degree, then G has a $u - v$ path.

6. If v is a cut vertex of a connected graph G, then v is a cut vertex of the complement \overline{G}.

7. Any cutest and any cycle of a graph have an even number of edges in common.

8. Every tournament contains a Hamiltonian path.