KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Department of Mathematics & Statistics

Math 514 Advanced Methods of Applied Mathematics

Final Exam Term 162

Time Allowed 2 Hours

Name__________________ ID # _______

<table>
<thead>
<tr>
<th>Q #</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/14</td>
</tr>
<tr>
<td>2</td>
<td>/12</td>
</tr>
<tr>
<td>3</td>
<td>/ 10</td>
</tr>
<tr>
<td>4</td>
<td>/12</td>
</tr>
<tr>
<td>5</td>
<td>/12</td>
</tr>
<tr>
<td>Total</td>
<td>/ 60</td>
</tr>
</tbody>
</table>

Important Note

Write clearly and show all work.

Instructor: F. D. Zaman
Q1) Solve the following integral equation using the *Wiener Hopf Technique*

\[\int_0^\infty e^{-|x-\xi|} u(\xi) d\xi = -\frac{1}{4} u(x) + 1, \quad 0 < x < \infty. \]
Q2) Solve using the *Mellin transform*

\[x^2 u_{xx} + xu_x + u_{yy} = 0, \ 0 \leq x < \infty, \ 0 < y < 1. \]

\[u(x,0) = 0 \]

\[u(x,1) = \begin{cases}
1, & 0 \leq x \leq 1 \\
0, & x > 1.
\end{cases} \]
Q 3) Use the method of integration by parts to obtain asymptotic estimate of the following

\[\text{Erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} dt. \]
Q4) Use *procedure* of the *Laplace method* to obtain an asymptotic estimate of the integral

\[f(x) = \int_{-\infty}^{\infty} \exp(-x \cos t) dt, \quad x \to \infty. \]
Q 5) Use *Watson’s Lemma* to find asymptotic representation of following parts for $x \to \infty$

\[
(Watson’s~Lemma: \quad \int_0^T e^{-x^t} g(t) \, dt \approx \sum_{n=0}^{\infty} \frac{g^n(0) \Gamma(\lambda + n + 1)}{n! x^{\lambda + n + 1}}, \quad x \to \infty)
\]

\[
(a) \int_0^x e^{-x \sinh t} \, dt
\]
(b) $\int_{0}^{\pi/2} \sqrt{\sin t} \ e^{-x\sin^4 t} \ dt$