(1) (a) What does it mean to say that a function \(f : \mathbb{R} \to \mathbb{R} \) is measurable?

Solution: An extended real-valued function \(f \) defined on \(\mathbb{R} \) is said to be Lebesgue measurable, or simply measurable, provided it satisfies one of the following four equivalent conditions:

(i) For each real number \(c \), the set \(\{ x : f(x) > c \} \) is measurable.

(ii) For each real number \(c \), the set \(\{ x : f(x) \geq c \} \) is measurable.

(iii) For each real number \(c \), the set \(\{ x : f(x) < c \} \) is measurable.

(iv) For each real number \(c \), the set \(\{ x : f(x) \leq c \} \) is measurable.

(b) Prove that if \(f : \mathbb{R} \to \mathbb{R} \) is increasing (i.e. \(f(x) \leq f(y) \) whenever \(x \leq y \)) then it is measurable.

Solution:

(1) If \(f \) is increasing, the set \(\{ x \in \mathbb{R} : f(x) > a \} \) is an interval for all \(a \), hence measurable. Therefore, by the definition (see (a) above), the function \(f \) is measurable.

(2) Let \(D \) be the set of discontinuities of \(f \). Then \(D \) is countable, hence of measure zero. The restriction \(f|_D \) is measurable on \(D \) because every subset of \(D \) is measurable, and the restriction \(f|_{\mathbb{R} \sim D} \) is measurable on \(\mathbb{R} \sim D \) because it is continuous. Therefore, \(f \) is measurable (see Proposition 5 - Section 3,1).

(c) Suppose that \(f : [0, 1] \to \mathbb{R} \) is measurable and that there is \(\delta > 0 \) such that, for each \(n \in \mathbb{N} \), \(m\{x : |f(x)| \leq 1/n\} \geq \delta \).

(i) Explain why \(\{ x : |f(x)| \leq 1/n \} \) is measurable.

(ii) Explain why there is at least one \(s \in [0, 1] \) such that \(f(s) = 0 \).

Solution:

(i) Since \(f \) is measurable, \(|f|\) is measurable as its the composition of continuous function \(g(x) = |x| \) with a measurable function \(f \) and \(\{x : |f(x)| \leq 1/n\} = |f|^{-1}[0, 1/n] \). Since \([0, 1/n] \) is a Borel set, \(|f|^{-1}[0, 1/n] \) is measurable.

(ii) Let \(E_n = \{ x : |f(x)| \leq 1/n \} \). Then \(E_n \supset E_{n+1} \), \(\cap E_n = \{ x : f(x) = 0 \} \),
$E_1 \subset [0, 1]$. So $m\{x : f(x) = 0\} = \lim_{n \to \infty} m(E_n) \geq \delta$ (Excision property of m). Then $\{x : f(x) = 0\} \neq \emptyset$ (Since $m(\emptyset) = 0$). So $\exists s$ so that $f(s) = 0$.

(2) (a) For a measurable subset $E \subseteq \mathbb{R}$, and simple function $\varphi : \mathbb{R} \to \mathbb{R}$, how is the (Lebesgue) integral $\int_E \varphi \, dm$ defined?

Solution: For a simple function φ defined on a set of finite measure E, we define the integral of φ over E by

$$\int_E \varphi = \sum_{i=1}^{n} a_i m(E_i),$$

where $\varphi = \sum_{i=1}^{n} a_i \chi_{E_i}$ and $E_i = \{x \in E : \varphi(x) = a_i\}$.

(b) State Fatou’s Lemma for a sequence of measurable functions.

Solution: Let $\{f_n\}$ be a sequence of measurable functions on E. If $\{f_n\} \to f$ pointwise a.e. on E, then

$$\int_E f = \int_E \lim f_n \leq \lim inf \int_E f_n.$$

(c) State the Monotone Convergence Theorem.

Solution: Let $\{f_n\}$ be an increasing sequence of nonnegative measurable functions on E. If $\{f_n\} \to f$ pointwise a.e. on E, then

$$\lim_{n \to \infty} \left(\int_E f_n \right) = \int_E \left(\lim_{n \to \infty} f_n \right) = \int_E f.$$

(d) Prove that Fatou’s Lemma implies the Monotone Convergence Theorem.

Solution: According to Fatou’s Lemma,

$$\int_E f \leq \lim inf \int_E f_n.$$

Also, notice that if f is a nonnegative measurable function on E and E_0 is a subset of E of measure zero, then

$$\int_E f = \int_{E \sim E_0} f \quad (\ast).$$

However, for each $n, f_n \leq f$ a.e. on E (note that f is measurable), and by the monotonicity of integration for nonnegative measurable functions and (\ast), $\int_E f_n \leq \int_E f$. Therefore,

$$\lim sup \int_E f_n \leq \int_E f.$$

Hence $\int_E f = \lim_{n \to \infty} \int_E f_n$.
(3) Identify which of the following statements is true and which is false. If a statement is true, give reason. If a statement is false, provide a counterexample.

(a) If \(f \) is a bounded real-valued function on \([0, 1]\) which is Lebesgue integrable then \(f \) is Riemann integrable.

Solution: False. Consider the Dirichlet function \(f(x) = \begin{cases} 1 & x \in \mathbb{Q} \cap [0, 1]; \\ 0 & x \in [0, 1] \sim \mathbb{Q}. \end{cases} \)

(b) Suppose that \((E_n)\) is a sequence of pairwise disjoint measurable subsets of \([0, 1]\). Then \(\lim_{n \to \infty} m(E_n) = 0. \)

Solution: True, indeed since \(E_n \subset [0, 1] \ \forall n \in \mathbb{N} \), then \(\bigcup_{n=1}^{\infty} E_n \subset [0, 1] \). By monotonicity of the measure \(m(\bigcup_{n=1}^{\infty} E_n) \leq m([0, 1]) = 1 \). Hence \(\sum_{n=1}^{\infty} m(E_n) \leq 1 \) since \(m \) is countably additive. Thus \(\lim_{n \to \infty} m(E_n) = 0. \)

(c) If \(f(x) = \int_{\mathbb{R}} \frac{(\sin t)^2}{t^2 + x^2} \, dt \), then \(\lim_{x \to \infty} f(x) = 0. \)

Solution: \(\frac{(\sin t)^2}{t^2 + x^2} \leq \frac{1}{t^2 + x^2} \) for all \(t \). Hence by monotonicity of Riemann integrable functions \(\int_{\mathbb{R}} \frac{(\sin t)^2}{t^2 + x^2} \, dt \leq \int_{\mathbb{R}} \frac{1}{t^2} \, dt = \frac{1}{x^2} \int_{\mathbb{R}} \frac{1}{(\frac{t}{x})^2 + 1} \, dt = \frac{1}{x^2} [\tan^{-1} \frac{t}{x}]_{-\infty}^{\infty} = \frac{\pi}{x^2} < \infty. \) Since \(f(x) \) is positive and limit of \(\frac{\pi}{x^2} \) goes to zero as \(x \) goes to \(\infty \), then \(\lim_{x \to \infty} f(x) = 0. \)

(4) (a) State Egoroff’s Theorem.

Assume \(E \) has finite measure. Let \(\{f_n\} \), be a sequence of measurable functions on \(E \) that converges pointwise on \(E \) to the real-valued function \(f \). Then for each \(\epsilon > 0 \), there is a closed set \(F \) contained in \(E \) such that \(\{f_n\} \to f \) uniformly on \(F \) and \(m(E \sim F) < \epsilon. \)

(b) Let \(f \) be a real-valued measurable function defined on \([0, 1]\). Prove that for each \(\epsilon > 0 \) there is a measurable set \(E_\epsilon \subset [0, 1] \) so that \(m([0, 1] \sim E_\epsilon) < \epsilon \) and so that \(f \) is bounded on \(E_\epsilon. \)

Solution (1) (Using Egoroff’s Theorem) Let \(f_n = f \chi_{\{|f| \leq n\}}. \) Since \(f \) is measurable, \(\{x : |f(x)| \leq n\} = f^{-1}[-n, n] \) is measurable. So, \(\chi_{\{|f| \leq n\}} \) is a measurable function and hence \(f \chi_{\{|f| \leq n\}} \), the product of two measurable functions is measurable. If \(|f(x)| < N \) then \(f_n(x) = f(x) \) for all \(n \geq N. \) So, \(\lim_{n \to \infty} f_n(x) = f(x) \ \forall x. \) Then by Egoroff’s Theorem \(\forall \epsilon > 0 \ \exists E_\epsilon \subset [0, 1] \) such that \(m([0, 1] \sim E_\epsilon) < \epsilon \) and \(f_n \to f \) uniformly on \(E_\epsilon. \) Since \(f_n \to f \) uniformly, in particular, \(\exists N \) such that \(|f_n(x) - f(x)| < 1 \) for all \(n \geq N \) and \(x \in E_\epsilon. \) Thus \(|f(x)| < 1 + |f_n(x)| \leq N + 1 \) on \(E_\epsilon. \)
Or (2) Let $E_n = \{ x : |f(x)| \geq n \}$. Then $E_{n+1} \subset E_n$, $\cap E_n = \emptyset$ and $m(E_1) \leq m[0,1] = 1$. Since f is real valued function, then $\forall \epsilon > 0 \exists N$ such that $m(E_N) < \epsilon$. And $|f(x)| \leq N$ on $[0,1] \sim E_N$.

(5) Suppose that f is integrable on $[0,1]$. Let $p_n(x) = x^n, n \in \mathbb{N}$.

(a) State why, for each n, fp_n is measurable and integrable on $[0,1]$.

Solution: p_n is continuous on $[0,1]$ and so p_n is measurable. Then fp_n, the product of two measurable functions is measurable. Moreover, $|p_n| \leq 1$ on $[0,1]$, so $|fp_n| \leq |f|$ and since f is integrable so is each fp_n.

(b) Prove that $\lim_{n \to \infty} \int_{[0,1]} fp_n dm = 0$.

Solution: Now $\lim_{n \to \infty} f(x)p_n(x) = 0$ unless $x = 1$ or $|f(x)| = \infty$. So, $\lim_{n \to \infty} f(x)p_n(x) = 0$ a.e. Since $|fp_n| \leq |f|$ we may apply the Dominated Convergence Theorem to get $\lim_{n \to \infty} \int_{[0,1]} fp_n dm = \int_{[0,1]} \lim_{n \to \infty} fp_n dm = 0$.

(6) (a) State the Dominated Convergence Theorem.

Solution Let $\{f_n\}$ be a sequence of measurable functions on E. Suppose there is a function g that is integrable over E and dominates $\{f_n\}$ on E in the sense that $|f_n| \leq g$ on E for all n. If $\{f_n\} \to f$ pointwise a.e. on E, then f is integrable over E and $\lim_{n \to \infty} \int_E f_n = \int_E f$.

(b) Use the Dominated Convergence Theorem to find

$$\lim_{n \to \infty} \int_0^\infty f_n dm,$$

where for each $n \geq 1$ the function $f_n : [0, \infty) \to \mathbb{R}$ is defined by

$$f_n(x) = \frac{x \sin \pi nx}{1 + nx^3}.$$

Solution: For $n \geq 1$, we have $|f_n(x)| = \frac{|x \sin \pi nx|}{1 + nx^3} \leq \frac{x}{1 + nx^3} \leq \frac{x}{nx^3} = \frac{1}{nx^2} \leq \frac{1}{x^2}$ for all $x \in (0, \infty)$. Also note that the function $\frac{1}{x^2}$ is integrable over $[0, \infty)$ ($\int_0^{\infty} \frac{1}{x^2} = \int_0^{\infty} \frac{1}{x^2} < \infty$).

Thus, by the Dominated Convergence Theorem and the squeezing theorem, we have

$$\lim_{n \to \infty} \int_{(0,\infty)} f_n = \int_{(0,\infty)} 0 = 0.$$

Notice that $\int_E f = \int_{E \sim E_0} f$ if $m(E_0) = 0$. 4
(7) (a) State Beppo Levis Theorem.

Solution Let \(\{f_n\} \) be an increasing sequence of nonnegative measurable functions on \(E \). If the sequence of integrals \(\{\int_E f_n\} \) is bounded, then \(\{f_n\} \) converges pointwise on \(E \) to a measurable function \(f \) that is finite a.e on \(E \) and

\[
\lim_{n \to \infty} \int_E f_n = \int_E f < \infty.
\]

(b) Use Beppo Levis Theorem, and the fact that \(\sum_{n \geq 1} \frac{1}{n^2} = \frac{\pi^2}{6} \), to prove that

\[
\int_0^\infty \frac{x}{e^x - 1} \, dx = \frac{\pi^2}{6}.
\]

Solution: First notice that \(\frac{x}{e^x - 1} = \frac{xe^{-x}}{1 - e^{-x}} \). Now, using the Geometric serious \(1 + a + a^2 + \ldots + a^n = \frac{1 - a^{n+1}}{1-a} \), if \(|a| < 1 \), we have \(\frac{1}{1-e^{-x}} = \sum_{n=0}^{\infty} e^{-nx} \) for \(x > 0 \). So,

\[
\frac{x}{e^x - 1} = \frac{xe^{-x}}{1 - e^{-x}} = \sum_{n=0}^{\infty} xe^{-(n+1)x}.
\]

Let \(f(x) = \frac{x}{e^x - 1} \) and define the sequence \((f_n) \) by \(f_n(x) = f(0,n] \) for each \(n \geq 1 \). Notice that \((f_n) \) is an increasing sequence of nonnegative measurable functions \((f_n) \) is the product of two measurable functions \((0,n] \) is measurable since \((0,n] \) is measurable and \(f \) is measurable since it is continuous on \((0, \infty) \). Moreover, \(f_n \to f \) a.e. on \([0, \infty) \). Using Beppo Levis Theorem and integration by parts, we have

\[
\lim_{n \to \infty} \int_0^\infty f_n \, dx = \int_0^\infty f \, dx = \int_0^\infty \frac{x}{e^x - 1} \, dx = \int_0^\infty \sum_{n=0}^{\infty} xe^{-(n+1)x} \, dx = \sum_{n=0}^{\infty} \int_0^\infty xe^{-(n+1)x} \, dx = \sum_{n=0}^{\infty} \frac{1}{(n+1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.
\]

Dr. M. R. Alfuraidan