1. Estimate the area under the graph of \(f(x) = 8 - x^2 \), from \(x = -2 \) to \(x = 2 \) using four rectangles and left endpoints.

2. Express the integral \(\int_2^4 (4 - x^2) \, dx \), as a limit of a Riemann Sum, then evaluate the limit. [No other method will be accepted]
3. By interpreting it as an area, find the value of the integral

\[\int_{-5}^{0} (2x + 4\sqrt{25 - x^2}) \, dx \]

4. Find the slope of the tangent line to the graph of the function

\[f(x) = \int_{\tan(x)}^{\cos(2x)} \ln(1 + 2t) \, dt \] at \(x = \frac{\pi}{4} \).