Exercise 1 (5 points) Find \(\frac{dy}{dx} \) if \(xy^2 - x^2 y = e^{xy} \)

Exercise 2 (5 points) A particle is moving along the curve \(y = x^2 \). If the X-coordinate is increasing at a rate of \(\sqrt{2} \) feet/s, how fast is the angle between the particle and X-axis is changing when \(x = 1 \).
Exercise 1 (5 points) Find \(\frac{dy}{dx} \) if \(xy^2 - x^2 y = \sin(xy) \)

Exercise 2 (5 points) A particle is moving along the curve \(y = x^2 \). If the X-coordinate is increasing at a rate of \(2\sqrt{2} \) feet/s, how fast is the angle between the particle and X-axis is changing when \(x = 1 \).
Exercise 1 (5 points) A particle is moving along the curve $y = x^2$. If the X-coordinate is increasing at a rate of $3\sqrt{2}$ feet/s, how fast is the angle between the particle and X-axis is changing when $x = 1$.