Name: ___________________________ ID Number: ___________________________
Section Number: ________________ Serial Number: ____________________________
Class Time: ______________________ Instructor’s Name: ______________________

Instructions:

1. Calculators and Mobile Phones are not allowed.
2. Please write legibly.
3. Show all your work. No points for answers without justification.
4. Make sure that you have 7 pages of problems (Total of 7 Problems)

<table>
<thead>
<tr>
<th>Question # Number</th>
<th>Points</th>
<th>Maximum Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. [8 points] (a) Determine whether the three vectors \(\mathbf{u} = (1, 2, 3) \), \(\mathbf{v} = (4, 5, 6) \) and \(\mathbf{w} = (7, 8, 9) \) are linearly independent or linearly dependent?

[4 points] (b) Do vectors in part(a) form a basis of \(\mathbb{R}^3 \)? Justify your answer.
2. [10 points] (a) Find basis for the solution space of the system

\[\begin{align*}
 x + 4y + 7z &= 0, \\
 2x + 5y + 8z &= 0, \\
 3x + 6y + 9z &= 0.
\end{align*} \]

(Note: To answer this question, you can use your calculations in question 1 part(a).)

[b] [3 points](b) Give the dimension of the solution space of the system in part(a).
3. [6 points] (a) Consider a set W of all vectors $(\frac{1}{2}, y, z)$ in \mathbb{R}^3. Determine whether this set forms a subspace?

[9 points] (b) Consider a set W of all vectors in \mathbb{R}^3 such that $x + z = 2y$. Determine whether this set forms a subspace or not?
4. [5 points] (a) Verify that the solutions $y_1 = x$, $y_2 = x^2$ and $y_3 = x^3$ are linearly independent solutions of the differential equation $x^3 y''' - 3x^2 y'' + 6xy' - 6y = 0$ on the interval $(0, \infty)$.

(b) [11 points] Solve the IVP

$$x^3 y''' - 3x^2 y'' + 6xy' - 6y = 0,$$

$$y(1) = 2, \ y'(1) = 3, \ y''(1) = 4.$$
5. [13 points] The general solution of a constant coefficient, linear homogeneous differential equation is $y = Ae^{2x} + B \cos x + C \sin x$. Find the corresponding differential equation.
6. **[15 points]** Find general solution of the constant coefficient homogeneous differential equation \(D^2(D - 3)(D^2 + 2D + 2)y = 0\).
7. [16 points] Use variation of parameters method to solve the differential equation
\[y'' - y = e^{2x} - e^{-2x}. \] The solutions of the associated homogeneous equation are
\[y_1 = e^x \] and
\[y_2 = e^{-x}. \]