1 (a) State Jordan Curve Theorem.

(b) Prove that $K_{3,3}$ is nonplanar.
(a) Show that $\alpha(C_5 \boxtimes C_5) = 5$.

(b) Show that a simple graph G with all degrees at most d satisfies

$$\alpha(G) \leq \frac{|V(G)|}{d + 1}.$$
3 (a) State Turán’s Theorem.

(b) Let G be a simple graph with $m \geq \lfloor n^2/4 \rfloor + 1$. Show that $t(G) \geq \lfloor n/2 \rfloor$, where $t(G)$ is the number of triangles of G.
4(a) An outerplanar graph is an undirected graph for which the vertices can be placed on a circle in such a way that no edges cross each other. Prove that any outerplanar graph is 3-vertex-colorable. A fact you may use without proof is that any outerplanar graph has a vertex of degree at most 2.

(b) For every integer \(t \geq 3 \), show that the Ramsey number \(r(3, t) \leq \frac{t^2 + 3}{2} \). (Hint: by induction on \(t \)).
(5) The probability space $\mathcal{G}_{(4,p)}$ has as sample space the $2^6 = 64$ spanning subgraphs of K_4 shown in the Figure below.

(a) Calculate the probability that a random graph G in $\mathcal{G}_{(4,p)}$ is connected.

(b) Calculate the expectation $E(X)$ if X denotes the number of components of $G \in \mathcal{G}_{(4,p)}$.

(c) Give an upper bound that is almost surely for the stability number of a random graph $G \in \mathcal{G}_{(4,p)}$.

6 (a) Find an infinite family of graphs G with $cr(G) = \frac{cm^3}{n^2}$, where c is a suitable positive constant.

(b) Show that almost every random graph $G \in \mathcal{G}_{n,p}$ has diameter 2 and hence is connected.
7 (a) Let $G := (V, E)$ be a graph. Consider a random 2-colouring of V. Show that the expected number of edges of G whose ends receive distinct colours is $m/2$.

(b) Deduce that every (loopless) graph G contains a spanning bipartite subgraph H with $e(H) \leq \frac{1}{2}e(G)$.
EXTRA CREDITS (10 POINTS)
(8) Suppose we have a simple, undirected graph G with $2n$ vertices and $2n$ edges, where $n \geq 3$. The graph consists of two disjoint cycles with n edges each. For example, if $n = 6$, the graph would look like this:

A pair of vertices u and v from G is selected uniformly at random from the pairs of distinct vertices with no edge between them. A new graph G' is constructed to be the same as G, except that there is an edge between u and v. What is the probability that G' is connected?