Exercise 1. (5-5-5 points)
Let V be the real vector space given by $V = \mathbb{R}^3$. Which one of the subsets of V is a subspace of V. Justify.

1. $W_1 = \{ (x, y, z) \in V | x + y + z = 0 \}$.
2. $W_2 = \{ (x, y, z) \in V | x + y = 0 \text{ and } x - 2z = 1 \}$.
3. Find a complement of W_i ($i = 1, 2$) when it is a subspace of V.
Exercise 2. (6-6-8)

(1) Find explicitly a linear transformation $T : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ such that $T(1, -1, 0) = (1, 0)$ and $T(-1, 0, 1) = (0, 1)$.

(2) Find the matrix representing T in the standard bases S_1, S_2 of \mathbb{R}^3 and \mathbb{R}^2.

(3) Let $B_1 = \{(-1, 1, 0), (1, 0, 1), (0, 0, -1)\}$ and $B_2 = \{(1, -1), (-1, 2)\}$. Find the matrix representing T in the bases B_1 and B_2.
Exercise 3. (5-6-9 points)

Let V be the real vector space given by $V = \mathbb{R}^3$ and f_1, f_2, f_3 the linear functionals of V defined by: $f_1(x, y, z) = 2x + y + z$, $f_2(x, y, z) = x + 2y + z$, $f_3(x, y, z) = x + y + 2z$.

(1) Prove that \{f_1, f_2, f_3\} is a basis for V^*.

(2) Let f be the linear functional of V defined by $f(x, y, z) = x + y + z$. Express f in the basis \{f_1, f_2, f_3\}.

(3) Find a basis B of V such that the dual basis B^* of B is the basis \{f_1, f_2, f_3\}.
Exercise 4. (5-5-5)
Let V be an n-dimensional vector space over a field F and W a subspace of V.

1. Prove that $\dim(W) + \dim(W^0) = \dim(V)$.

2. Assume that $V = M_2(\mathbb{R})$ the real vector space of all 2×2 matrices and $W = \{A \in V | AB = BA$ for all $B \in V\}$. Find explicitly W and $\dim(W)$.

3. Show that W^0 is a hypersubspace of V^*.
Exercise 5. (5-5-5-5)

Let F be a field and V be a finite dimensional space over F.

(1) Find all linear transformations of F as a vector space over itself.

(2) Let f a linear functional on V such that $W = \ker f$ is a hypersubspace of V. Prove that for every linear functional g of V such that $g(W) = 0$, there is a scalar c such that $g = cf$.

(3) Let T be a linear operator on V and d a scalar in F such that $Tu = du$ for some non-zero vector $u \in V$. Prove that there is a non-zero linear functional h on V such that $T^d(h) = dh$.

(4) Assume that $F = \mathbb{R}$, $V = \mathbb{R}^2$ and T is defined by $T(a, b) = (2a, o)$. Find u, d and h satisfying question (3).