1) An interest rate of 8% compounded semiannually corresponds to an effective rate of
A) 9.2456% B) 8.16% C) 12% D) 8.2031% E) 8%

2) If an initial investment of $4000 grows to $5718 in six years, find the nominal rate of interest, compounded quarterly, that was earned by the money.
A) 6.0% B) 6.5% C) 9.2% D) 12.0% E) 5.2%

3) At an annual rate of 8% compounded continuously, in how many years would it take for a principal to double?
A) 7.7 B) 7.3 C) 6.5 D) 9.2 E) 8.7

4) A debt of $2000 due four years from now is to be repaid by a payment of $1000 now and a second payment at the end of two years. How much should the second payment be if the interest rate is 5% compounded annually?
A) $671.61 B) $845.23 C) $683.24 D) $711.56 E) $888.21

5) For an initial investment of $10,000, suppose a company guarantees the following cash flows at the end of the indicated years:
 Year Cash Flow
 1 $4000
 3 $8000
Assume an interest rate of 5% compounded annually. The net present value of the cash flows is
A) $2000.00 B) $1254.67 C) $848.43 D) $639.44 E) $720.23

6) In five years a company will purchase equipment costing $100,000. The company decides to place a single deposit into a savings account now so that its future value will equal the cost of the equipment. If the account earns interest at an annual rate of 10% compounded continuously, determine the deposit to the nearest dollar.
A) $54,234 B) $71,332 C) $60,653 D) $53,221 E) $40,538

7) To purchase land for an industrial site, a company agrees to pay $20,000 down and $10,000 at the end of every six-month period for 10 years. If the interest rate is 10% compounded semiannually, what is the corresponding cash value of the land?
A) $144,622 B) $105,262 C) $156,550 D) $100,287 E) $120,002

8) Suppose an annuity due consists of 6 yearly payments of $200 and the interest rate is 5% compounded annually. Determine the future value at the end of 6 years.
A) $1561.81 B) $1360.38 C) $1160.38 D) $1490.99 E) $1428.40

9) Suppose a person invests $20,000 in a business that guarantees the same cash flow at the end of every quarter for four years. If the investment earns interest at the rate of 16% compounded quarterly, then each cash flow is
A) $2341.23 B) $1716.40 C) $1917.39 D) $916.40 E) $1527.52
10) Solving the problem,

Maximize
\[Z = 4x + 6y \]

Subject to
\[
\begin{align*}
 x + y & \geq 3 \\
 y & \leq 5 \\
 x & \leq 4 \\
 x & \geq 0, \ y & \geq 0
\end{align*}
\]

the maximum value of Z is

A) 46 \hspace{1cm} B) 44 \hspace{1cm} C) 64 \hspace{1cm} D) 56 \hspace{1cm} E) 48

11) A manufacturer produces two products, product A and product B. Both products require processing on Machines I and II. The number of hours needed to produce one unit is given by the following chart:

<table>
<thead>
<tr>
<th></th>
<th>Machine I</th>
<th>Machine II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product A</td>
<td>2 hrs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>Product B</td>
<td>1 hrs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>

Machine I is available for at most 1000 hours and Machine II is available for at most 2500 hours. If the profit made on product A is $20 / unit and the profit made on product B is $25 / unit. Find the maximum profit.

A) $17,000 \hspace{1cm} B) $14,000 \hspace{1cm} C) $16,625 \hspace{1cm} D) $16,000 \hspace{1cm} E) $15,625

12) Using the corner-point technique to maximize
\[Z = x + 2y \]

subject to
\[
\begin{align*}
 y & \geq x + 3 \\
 x + 2y & \leq 24 \\
 x, y & \geq 0
\end{align*}
\]

the maximum value of Z occurs

A) only at the point (6,9) \hspace{1cm} B) only at the point (6,12) \hspace{1cm} C) at any point on the line segment joining (6,9) and (0,12) \hspace{1cm} D) at any point on the line segment joining (0,3) and (0,12) \hspace{1cm} E) at any point on the line segment joining (0,3) and (6,9)

13) In the initial simplex tableau below, find the pivot entry.

\[
\begin{array}{cccc|c}
 x_1 & x_2 & s_1 & s_2 & Z \\
 \hline
 s_1 & -1 & 2 & 1 & 0 & 0 & 8 \\
 s_2 & 10 & 6 & 0 & 1 & 0 & 12 \\
 Z & -3 & -8 & 0 & 0 & 1 & 0 \\
\end{array}
\]

A) 0 \hspace{1cm} B) -1 \hspace{1cm} C) 10 \hspace{1cm} D) 6 \hspace{1cm} E) 2
14) In the initial simplex tableau below, find the departing variable.

\[
\begin{array}{cccc|c}
 x_1 & x_2 & s_1 & s_2 & Z \\
 s_1 & -1 & 2 & 1 & 0 & 8 \\
 s_2 & 10 & 6 & 0 & 1 & 12 \\
 Z & -3 & -8 & 0 & 1 & 0 \\
\end{array}
\]

A) \(x_1 \)
B) \(s_2 \)
C) \(s_1 \)
D) \(x_2 \)
E) \(Z \)

15) Maximize

\[
Z = x_1 - 2x_2 + 3x_3
\]

subject to

\[
\begin{align*}
2x_1 + x_2 + 2x_3 & \leq 10 \\
-x_1 + x_2 + x_3 & \leq 8 \\
x_1, x_2, x_3 & \geq 0
\end{align*}
\]

A) 15
B) 5
C) 10
D) 0
E) 20

16) The dual of

Minimize

\[
Z = x_1 + 3x_2
\]

subject to

\[
\begin{align*}
x_1 - 2x_2 & \geq 4 \\
3x_1 + x_2 & \geq 1 \\
x_1, x_2 & \geq 0
\end{align*}
\]

is:

A) Maximize \(W = y_1 + 3y_2 \) subject to \(y_1 - 2y_2 \leq 4; 3y_1 + y_2 \leq 1; y_1, y_2 \geq 0 \).

B) Maximize \(W = y_1 + 3y_2 \) subject to \(y_1 + 3y_2 \geq 4; 2y_1 + y_2 \geq 1; y_1, y_2 \geq 0 \).

C) Maximize \(W = 4y_1 + y_2 \) subject to \(y_1 + 3y_2 \leq 1; 2y_1 + y_2 \leq 3; y_1, y_2 \geq 0 \).

D) Maximize \(W = 4y_1 + y_2 \) subject to \(y_1 + 2y_2 \geq 1; 3y_1 + y_2 \geq 3; y_1, y_2 \geq 0 \).

E) Maximize \(W = 4y_1 + y_2 \) subject to \(y_1 + 3y_2 \geq 1; 2y_1 + y_2 \leq 3; y_1, y_2 \geq 0 \).