1. [10pts] Let R be a relation defined on \mathbb{R} by xRy iff $xy \geq 0$. Is the relation R

(i) reflexive? (ii) symmetric? (iii) transitive? Justify your answers.

Solution. (i) Let $x \in \mathbb{R}$. Then $x^2 \geq 0$, i.e. xRx. Hence R is reflexive.

(ii) Let $x, y \in \mathbb{R}$ such that xRy. Then $yx = xy \geq 0$, i.e. yRx. Hence R is symmetric.

(iii) Let $x = 1, y = 0, z = -1$. Then xRy and yRz (because $xy \geq 0$ and $yz \geq 0$), but $xz = -1 \nexists 0$.

Hence R is not transitive.

2. [10pts] Prove that the function $f : \mathbb{Z}_{31} \rightarrow \mathbb{Z}_{31}$ given by $f ([x]) = [1 + 2x]$ is a bijection.

Proof. Observe first that the domain and codomain of the function f are finite ($|\mathbb{Z}_{31}| = 31$) and they have the same cardinality (in fact they are equal), hence f is one-to-one iff it is onto. This means that to prove that f is bijective, it is enough to prove that it is one-to-one. For that, let $x, y \in \mathbb{Z}$ be such that $f ([x]) = f ([y])$. Then $[1 + 2x] = [1 + 2y]$ i.e. $1 + 2x \equiv 1 + 2y \pmod{31}$. We thus get $2x \equiv 2y \pmod{31}$ and hence $16 \times 2x \equiv 16 \times 2y \pmod{31}$. Since $32 \equiv 1 \pmod{31}$, we obtain $x \equiv y \pmod{31}$ i.e. $[x] = [y]$. This proves that f is one-to-one. ■