(1) (a) Prove or disprove: If \(\{f_k\}_{k=1}^\infty \) is uniformly integrable over a set \(E \) and \(\{f_n\} \to f \) pointwise a.e. on \(E \), then \(f \) is integrable over \(E \).

(b) Let \(\mathcal{F} \) be a family of functions, each of which is integrable over \(E \). Show that \(\mathcal{F} \) is uniformly integrable over \(E \) if and only if for each \(\varepsilon > 0 \), there is a \(\delta > 0 \) such that for each \(f \in \mathcal{F} \),

\[
\text{if } A \subseteq E \text{ is measurable and } m(A) < \delta, \text{then } \left| \int_A f \right| < \varepsilon.
\]
(2) (a) Let \(\{f_n\} \to f \) in measure on \(E \) and \(g \) be a measurable function on \(E \) that is finite a.e. on \(E \). Show that \(\{f_n\} \to g \) in measure on \(E \) if and only if \(f = g \) a.e. on \(E \).

(b) Let \(f \) and each \(f_n \) be integrable and \(\int |f_n - f| \, dm \to 0 \). Show that \(f_n \to f \) in measure.
A real-valued function f defined on an interval $[a, b]$ satisfies a Lipschitz-condition with constant M if $|f(y) - f(x)| \leq M|y - x|$ for all $x, y \in [a, b]$. Prove that f satisfies a Lipschitz condition with constant M if and only if

(i) f is absolutely continuous on $[a, b]$, and

(ii) $|f'(x)| \leq M \text{ m} - a.e.$
(4) (a) Let f be integrable over $[0, 1]$. Show that

$$exp\left[\int_0^1 f(x) \, dx\right] \leq \int_0^1 exp(f(x)) \, dx$$

(b) Compute $TV_{[0,50]}(e^x)$, the total variation of e^x on the interval $[0, 50]$.

Dr. M. R. Alfuraidan