1. Compute
\[\int_0^\infty \frac{x^{1/3}}{1 + x^2} \, dx. \]

2. Let \(f : G \to \mathbb{C} \) be a meromorphic function with zeros \(a_1, \ldots, a_m \) and poles \(p_1, \ldots, p_l \) in \(G \) (repeated according to multiplicity). Let \(\gamma \) be a closed curve in \(G \) which does not pass through any \(a_j \) or any \(p_k \). Suppose \(\gamma \approx 0 \) in \(G \). Then prove that
\[\frac{1}{2\pi i} \int_{\gamma} \frac{z^n f'(z)}{f(z)} \, dz = \sum_{j=1}^m n(\gamma; a_j)a_j^n - \sum_{k=1}^l n(\gamma; p_k)p_k^n \]
for any positive integer \(n \).

3. Prove or disprove the following statements.
 (a) Let \(f : G \to \mathbb{C} \) be an analytic function such that \(f'(a) = 0 \) for some \(a \in G \). Then \(f \) cannot be 1-1 on any neighborhood of \(a \).
 (b) If \(f : G \to \mathbb{C} \) is not 1-1, then there exists a point \(a \in G \) such that \(f'(a) = 0 \).

4. Find the number of zeros of \(f(z) = z^8 - 5z^2 e^{z+1} + 4z \) in \(D \).

5. Let \(U \) be a bounded open region in \(\mathbb{C} \) and let \(\{ f_n : G \to U \} \) be a sequence of analytic function into \(U \). Suppose that there exists a point \(a \in G \) and \(p \in \partial U \) such that
\[\lim_{n \to \infty} f_n(a) = p. \]
Prove that for any compact subset \(K \) of \(G \) and for any \(\varepsilon > 0 \), there exists \(N > 0 \) such that
\[f_n(K) \subset B(p; \varepsilon) \]
if \(n \geq N \).

6. Let \(f : D \to D \) be analytic. Suppose that \(f(0) = 0 \) and \(f'(0) = a \).
 (a) Let \(g(z) := f(z)/z \). Then show that \(g \) is an analytic function from \(D \) into \(D \) and \(g(0) = a \).
 (b) For the \(g \) as above, show that \(g'(0) = f''(0)/2 \).
 (c) Using (a) and (b), prove \(|f''(0)| \leq 2(1 - |a|^2)\).
 (d) What is \(f \), if we further assume that \(f''(0) = 2(1 - |a|^2) \)?
7. Let $G = \mathbb{C} \setminus \{0\}$ and let $f \in \text{Aut}(G)$.

 (a) Show that $z = 0$ is either a removable singularity or a pole of f.

 (b) Show that either $f(z) = az$ or $f(z) = a/z$ for some nonzero constant a.

8. Let $u : H = \{z \in \mathbb{C} : \text{Im } z > 0\} \to \mathbb{R}$ be a harmonic function which is continuous up to $\partial H = \mathbb{R}$. Suppose u is bounded and $u \equiv 0$ on ∂H. Prove $u \equiv 0$ on H.