1. For \(f(x, y) = \sqrt{x} + \sqrt{y} + \ln (9 - x^2 - y^2) \), find:

 (a) Domain of \(f(x, y) \) and its sketch.

 (b) Level curve of \(f(x, y) \) that passes through \((2, 2)\).

2. Check whether or not \(\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4 + y^2} \) exists. Justify your answer.
Math 201 Section#: Serial #: Quiz 3(d) (Term 181)

Name : .. ID #...................................... Marks/6

1. For \(f(x, y, z) = \ln \left(16 - 4x^2 - 4y^2 - z^2 \right) \), find and sketch domain of \(f \).

2. Determine set of points at which \(f(x, y) = \frac{e^x + e^y}{e^{xy} - 1} \) is continuous.

3. If \(x - z + 1 = \tan^{-1}(yz) \), then find \(\frac{\partial z}{\partial x} \bigg|_{(\frac{\pi}{4},1,1)} \).
1. For $f(x, y) = \sqrt{1 - x^2 + y^2}$, find and sketch domain of f.

2. Evaluate: $\lim_{(x,y) \to (0,0)} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}$.

3. For $F(x, y) = x \cos y + \sin(xy)$, find $F_{xy}(1, \frac{\pi}{2})$.
1. Find and sketch domain of \(f(x, y) = 4 \ln (3 - 2x^2 - y^2) \). Also find level curve of \(f(x, y) \) that passes through \((1, 0)\).

2. For \(z = \frac{x^2 + y^2}{x + y} \), find \(x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} \).