Name:________________________ ID Number:________________________

Section Number:______________ Serial Number:________________________

Class Time:___________________ Instructor’s Name:____________________

Instructions:

1. Calculators and Mobile Phones not allowed.
2. Please write legibly.
3. Make sure that you have eight pages of problems (Total of eight Problems).

<table>
<thead>
<tr>
<th>Question Number</th>
<th>Points</th>
<th>Maximum Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. (10 Points) Find the rank of the following matrix

\[
A = \begin{bmatrix}
2 & -1 & 1 & 0 \\
3 & 2 & 0 & 1 \\
-1 & 4 & -2 & 1 \\
\end{bmatrix}
\]
2. (12 Points) Find a basis and the dimension of the subspace

\[U = \{(x_1, x_2, x_3, x_4) \mid x_1 + x_2 = x_3 + x_4\}. \]
3. (16 Points) Find the general solution of the equation $y'' - 2y' + y = \frac{e^x}{x}, \ (x > 0)$.
4. (12 Points) Find the general solution of the equation $y'' + 4y = 5 \sin 2x + 2xe^x + 1$. Do not evaluate the constants in the particular solution.
5. (14 Points) [This question has three parts: a, b, and c]
The three solutions of the third order differential equation $y''' - y'' + y' - y = 0$ are given by: $y_1 = e^x$, $y_2 = \cos x$, $y_3 = \sin x$.

(a) Verify that the three solutions are linearly independent.

(b) Write the general solution of the equation.
(c) Find a particular solution if $y(0) = 1$, $y'(0) = 2$, and $y''(0) = -1$.
6. (10 Points) The general solution of a constant coefficient differential equation is:
\[y = (c_1 + c_2 x)e^x + c_3 \cos(2x) + c_4 \sin(2x). \] Construct the corresponding constant coefficient differential equation.
7. (10 Points) Transform the following differential equation into an equivalent system of first-order differential equations, and write the system in matrix form:

\[x''' - (\sin t)x'' + e^t x = t^2. \]
8. (16 Points) [This question has two parts: a and b] Consider the homogeneous system of first order differential equations:

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix} =
\begin{bmatrix}
 4 & 1 & 4 \\
 1 & 7 & 1 \\
 4 & 1 & 4
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}
\]

The three solutions of this system are:

\[
X_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} e^{9t}, \quad X_2 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} e^{6t}, \quad X_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}.
\]

(a) Verify that \(X_1\) is a solution.
(b) Find a particular solution satisfying $x(0) = 0$, $y(0) = 1$, $z(0) = 1$.