Name: ____________________________

This exam contains 11 pages (including this cover page) and 10 questions. Total of points is 130.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>130</td>
<td></td>
</tr>
</tbody>
</table>
1. (a) (10 points) Let \mathcal{M} be a subspace of a Hilbert space \mathcal{H}. Show that the following are equivalent
 1. $u \in \mathcal{M}^\perp$.
 2. $||u - v|| \geq ||u||$ for all $v \in \mathcal{M}$.

(b) (5 points) Let \mathcal{H} be an inner product space. For a non-zero vector $a \in \mathcal{H}$. Set

$$\mathcal{M} = \{u \in \mathcal{H} : (u, a) = 0\}.$$

Find \mathcal{M}^\perp.

2. (a) (10 points) Let \{\phi_1, \ldots, \phi_n\} be an orthonormal set of vectors in a Hilbert space \(\mathcal{H} \) and \(\mathcal{M} = \langle \phi_1, \ldots, \phi_n \rangle \). Let \(x \in \mathcal{H} \) and set \(y = \sum_{i=1}^{n} (x, \phi_i) \phi_i \). Show that

1. \(y \) is orthogonal to \(x - y \).
2. \(x - y \in \mathcal{M}^\perp \)
3. \(d(x, \mathcal{M}) = ||x - y|| \)

(b) (8 points) Let \(\mathcal{M} \) be a one-dimensional subspace of \(\mathcal{H} \). Let \(a \) be a non-zero element of \(\mathcal{M} \). Show that

\[
d(x, \mathcal{M}^\perp) = \frac{|\langle x, a \rangle|}{||a||}
\]
3. (a) (15 points) Let \(H \) be an inner product space and let \(p : H \to H \) be a projection

1. Show that \(H = \mathcal{R}(p) \oplus \text{Ker} \, p \).

2. Recall that \(p \) is called an \textbf{orthogonal projection} if its null-space and its range are orthogonal.

 Show that if \(p \) is an orthogonal projection, then

 \[
 \text{Ker} \, p = \mathcal{R}(p)^\perp \quad \text{and} \quad \mathcal{R}(p) = (\text{Ker} \, p)^\perp.
 \]

3. Let \(p : H \to H \) be a non-zero orthogonal projection. Show that \(p \) is continuous and \(\|p\| = 1 \).
4. (a) (10 points) Let \mathcal{M} be a non-empty, closed subspace of a Hilbert space \mathcal{H}.

1. Show that there exists a unique projection $p_\mathcal{M} : \mathcal{H} \to \mathcal{H}$ such that $\mathcal{R}(p_\mathcal{M}) = \mathcal{M}$.
2. Show that $d(u, \mathcal{M}) = ||u - p_\mathcal{M}(u)||$.
5. (a) (7 points) Let \mathcal{H} be a Hilbert space and \mathcal{M} be a closed subspace of \mathcal{H}. Prove that for any $f \in \mathcal{M}'$, the functional $F: \mathcal{H} \to \mathbb{R}$ defined by

$$F(u) = f(\text{pr}_\mathcal{M}(u))$$

is an extension of f with $||F|| = ||f||$.

6. (a) (10 points) Let f be a continuous linear functional on a Hilbert space \mathcal{H}. Prove that there exists a unique $z \in \mathcal{H}$ such that $f(x) = \langle x, z \rangle$ and $\|f\| = \|z\|.$

(b) (5 points) Let $\{\phi_n\}$ be an orthonormal basis of \mathcal{H}, show that

$$z = \sum_{n=1}^{\infty} f(\phi_n) \phi_n.$$
7. (a) (10 points) Let \mathcal{H} be a Hilbert space and $\{\phi_n\}$ be an orthonormal system. Prove that ϕ_n converges weakly to zero, that is, $\langle y, \phi_n \rangle \rightarrow 0$ for all $y \in \mathcal{H}$.

8. (a) (10 points) Let x be a non-zero of a normed space X. Prove that there exists f a bounded linear functional such that $||f|| = 1$ and $f(x) = ||x||$.

(b) (10 points) Let X be a reflexive space, show that for every $f \in X'$, $||f|| = 1$, there exists $x \in X$ such that $||x|| = 1$ and $f(x) = 1$.

Hint: Use part (a).
9. (a) (10 points) Let \(\{\phi_n\} \) be an orthonormal basis in \(\mathcal{H} \). Let \(\{\alpha_n\} \) be a bounded sequence of real numbers. Show that

\[
A(\phi_n) = \alpha_n \phi_n
\]

defines a bounded linear operator \(A : \mathcal{H} \to \mathcal{H} \) such that

\[
||A|| = \sup_{n \in \mathbb{N}} |\alpha_n|
\]
10. (a) (10 points) Let U and V be normed spaces and let $A : U \to V$ be a linear operator.
Show that the inverse operator $A^{-1} : \mathcal{R}(A) \to U$ exists and continuous if and only if A is bounded below (i.e., there exists $c > 0$ such that $||Au|| \geq c||u||$ for all $u \in U$.)