Q1- Let

\[f(x) = \begin{cases} \frac{(x - 1)(x + 3)}{(x - 1)^n}, & x > 1 \\ x^2 + 3, & x \leq 1 \end{cases} \]

where \(n \) is a nonnegative integer, \((n \geq 0) \)

Use limits to find the value(s) of \(n \) for which the function has infinite discontinuity at \(x = 1 \).

Q2. Using the \(\varepsilon - \delta \) definition, find the value of \(\delta \) such that \(\lim_{x \to -4} (1 - 3x) = 13 \)

Q3. Find real \(\alpha \) such that \(f(x) = \begin{cases} \alpha^4 - 2x^2 & if \ x \leq 1 \\ x - 2\alpha^2 & if \ x > 1 \end{cases} \) is continuous.
Q4. Use the limits to find all horizontal asymptotes to the curve of the function:

\[f(x) = \sqrt{9x^2 + 2x} - \sqrt{9x^2 + 5x} \]

Q5. Solve the limit

\[\lim_\limits{x \to \infty} \frac{\sqrt{9x^2} - 9}{2x - 6} \]