Problem 2: (20 points) (Justify your answers) Let

\[f(x) = \begin{cases}
 x + 1 & , \quad x \leq 1 \\
 \frac{1}{x} & , \quad 1 < x < 4 \\
 \sqrt{4-x} & , \quad x \geq 4
\end{cases} \]

(a) Find \(\lim_{x \to 1} f(x) \)

(b) Find \(\lim_{x \to 4} f(x) \)

(c) Find all numbers at which \(f \) is discontinuous and state the type of discontinuity of each one.

(d) Find the numbers at which \(f \) is discontinuous but continuous from the left

(e) Find the numbers at which \(f \) is discontinuous but continuous from the right

(f) Show that the function is left–hand differentiable at \(x = 1 \)
Problem 2: (7 points) Find all horizontal asymptotes to the function \(f(x) = \sqrt{x^2 + 5} - x \)

Problem 3: (7 points) Find the equation of the tangent line to \(y = \sqrt{x - 2} \) that is parallel to the line \(x - 2y = 2 \) (Use the definition of the derivative)

Problem 4: (7 points) Consider the graph of the function \(f(x) \). On the same graph, sketch the graph of \(f'(x) \)