1. The graph of the parametric curve
\[x = 1 - 2t^3, \quad y = 1 + 2t^3, \quad -\infty < t < \infty \]

is

(a) a straight line
(b) a parabola
(c) an ellipse
(d) a hyperbola
(e) a circle

2. A curve is given by the parametric equations \(x = \cos 2t \) and \(y = \sin t \), then the cartesian equation of the curve is given by:

(a) \(y^2 = \frac{1 - x}{2} \)
(b) \(x^2 + y^2 = 1 \)
(c) \(y = \frac{x - 2}{2} \)
(d) \(x = y^2 + 1 \)
(e) \(y^2 = x + 1 \)
3. The parametric curve $C : x = \frac{1}{3}t^3 - t, \ y = t^2 - 1$ has

(a) a horizontal tangent at $(0, -1)$
(b) a vertical tangent at $(0, -1)$
(c) vertical tangents at $\left(\pm \frac{1}{3}, 0 \right)$
(d) horizontal tangents at $\left(\pm \frac{2}{3}, 0 \right)$
(e) a horizontal tangent at $\left(-\frac{4}{3}, 0 \right)$

4. One of the following statements is **FALSE** with respect to the graph of $r = \cos \left(\frac{\theta}{3} \right), 0 \leq \theta \leq 3\pi$.

(a) a rose with 6 leaves
(b) symmetric with respect to the polar axis
(c) intersect itself at one point between $0 \leq \theta \leq 3\pi$
(d) passing through the pole
(e) directed counter clock-wise
5. The slope of the tangent line to the curve of \(r = \frac{1}{\theta} \) at \(\theta = \frac{\pi}{2} \) is

(a) \(\frac{2}{\pi} \)

(b) 2

(c) \(-2\)

(d) 0

(e) \(\frac{-\pi}{2} \)

6. The polar curves \(r = k \sin \theta, k > 0 \) and \(r = 1 + \cos \theta \) intersect at the point \(\left(\frac{3}{2}, \frac{\pi}{3} \right) \), then the value of \(k \) and the other point of intersection of those curves are:

(a) \(\sqrt{3}, (0, \pi) \)

(b) \(\frac{\sqrt{3}}{3}, (0, 0) \)

(c) \(\frac{\sqrt{3}}{3} \left(\frac{1}{2}, \frac{2\pi}{3} \right) \)

(d) \(\sqrt{3}, \left(\frac{1}{2}, -\frac{\pi}{3} \right) \)

(e) \(\frac{\sqrt{3}}{3} \left(0, \frac{\pi}{2} \right) \)
7. The area of the region shared by

\[r = 8 \text{ and } r = 8(1 + \sin \theta), \]

is

(a) \(16(5\pi - 8) \)

(b) \(32(\pi + 8) \)

(c) \(96\pi \)

(d) \(16(3\pi - 8) \)

(e) \(32\pi \)

8. The length of the parametric curve \(x = \frac{1}{3}t^3 - t, \ y = t^2 - 1, \ 0 \leq t \leq 2, \) is

(a) \(\frac{14}{3} \)

(b) \(\frac{7}{3} \)

(c) \(\frac{8}{3} \)

(d) \(2 \)

(e) \(4 \)
9. The area of the region enclosed by one loop of the curve \(r = 4 \cos 3\theta \) is

(a) \(\frac{4 \pi}{3} \)

(b) \(\frac{8 \pi}{3} \)

(c) \(\frac{2 \pi}{3} \)

(d) \(\frac{\pi}{3} \)

(e) \(\pi \)

10. The equation

\[4x^2 + 4y^2 + 4z^2 = 16y - 12z + 3 \]

represents

(a) a sphere with center \(\left(0, 2, -\frac{3}{2}\right) \) and radius \(\sqrt{7} \)

(b) a sphere with center \(\left(0, -2, \frac{3}{2}\right) \) and radius 7

(c) a sphere with center \((0, 0, 0) \) and radius \(\sqrt{3} \)

(d) a point

(e) no graph in \(\mathbb{R}^3 \)
11. $< a, b, 0 >$ is a non-zero vector perpendicular to $< 2, -1, 3 >$ then $\frac{a^2 + b^2}{a^2} =$

(a) 5
(b) 4
(c) 3
(d) 2
(e) 1

12. Let $\vec{u} = < 3, -1, 0 >$, and $\vec{v} = < 0, 1, 2 >$. Then $\text{proj}_v \vec{u} =$

(a) $\left< 0, \frac{-1}{5}, \frac{-2}{5} \right>$
(b) $\left< 0, -1, -2 \right>$
(c) $\left< \frac{-3}{10}, \frac{1}{10}, 0 \right>$
(d) $\left< -3, 1, 0 \right>$
(e) $\left< 0, 1, 2 \right>$
13. Let $A = (1, 0, -4)$, $B = (4, 4, 8)$, and $C = (a, b, c)$ be points in three dimensional space. If \overrightarrow{AC} is the unit vector in the same direction as \overrightarrow{AB}, then $26(a + b + c) =$

(a) -40
(b) 10
(c) 20
(d) -4
(e) 50

14. A vector in two dimensional space \vec{v} that makes an angle $\frac{\pi}{4}$ with the positive x-axis and with $|\vec{v}| = 6$ is given by:

(a) $v = \langle 3\sqrt{2}, -3\sqrt{2} \rangle$
(b) $v = \langle -3\sqrt{2}, -3\sqrt{2} \rangle$
(c) $v = \langle 6, 0 \rangle$
(d) $v = \langle -3\sqrt{2}, 3\sqrt{2} \rangle$
(e) $v = \langle 3\sqrt{3}, -3 \rangle$
15. If the angle between the vectors \(\langle 1, 1, -2 \rangle \) and \(\langle 1, x, 0 \rangle \) is 60°, then the sum of all possible values of \(x \) is

(a) 4
(b) 2
(c) 0
(d) -2
(e) -4

16. If the unit vectors that are parallel to the tangent line to the curve \(y = 2 \sin x \) at the point \(x = \frac{5\pi}{6} \) are given by \(\vec{u} = \pm \frac{1}{a}(i + bj), a > 0 \) then \(a + \sqrt{3}b = \ldots \)

(a) -1
(b) 1
(c) 5
(d) -5
(e) -2
17. The set of all points equidistant from the points \(A(1, -7, 2)\) and \(B(3, 1, -1)\) is
(perp stands for perpendicular)

(a) a plane perp to the line \(AB\), with equation \(4x + 16y - 6z = -43\)

(b) a plane perp to the line \(AB\), with equation \(2x + 8y - 3z = 22\)

(c) any line perp to the line \(AB\)

(d) only the point \((2, -3, \frac{1}{2})\)

(e) a line perp to the line \(AB\), and passing through the point \((2, -3, \frac{1}{2})\)

18. If \(\theta\) is the angle between the nonzero vectors \(\vec{a}\) and \(\vec{b}\), then \(\cot \theta =\)

(a) \(\frac{a \cdot b}{|a \times b|}\)

(b) \(\frac{|a \times b|}{a \cdot b}\)

(c) \(\frac{a \cdot b}{|a||b|}\)

(d) \(\frac{|a \times b|}{|a||b|}\)

(e) \((a \cdot b)|a \times b|\)
19. A vector \(\vec{V} \) such that
\[
\langle 1, 2, 1 \rangle \times \vec{V} = \langle 3, 1, 5 \rangle
\]
is:

(a) there is no such vector
(b) \(\langle 1, -3, 0 \rangle \)
(c) \(\langle -1, -7, -2 \rangle \)
(d) \(\langle 2, -1, 1 \rangle \)
(e) \(\langle 5, 5, 4 \rangle \)

20. The area enclosed by the three polar curves
\[
\theta = \pi(r \geq 0), \quad \theta = \frac{\pi}{2} (r \leq 0)
\]
equals

(a) \(\frac{1}{2} \)
(b) \(1 \)
(c) \(2 \)
(d) \(\sqrt{2} \)
(e) \(2\sqrt{2} \)
<table>
<thead>
<tr>
<th>Q</th>
<th>MM</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>e</td>
<td>e</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>b</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>e</td>
<td>e</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>b</td>
<td>e</td>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>6</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>7</td>
<td>a</td>
<td>e</td>
<td>a</td>
<td>b</td>
<td>e</td>
</tr>
<tr>
<td>8</td>
<td>a</td>
<td>b</td>
<td>e</td>
<td>d</td>
<td>c</td>
</tr>
<tr>
<td>9</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>10</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>11</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>12</td>
<td>a</td>
<td>b</td>
<td>d</td>
<td>e</td>
<td>a</td>
</tr>
<tr>
<td>13</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>14</td>
<td>a</td>
<td>e</td>
<td>c</td>
<td>e</td>
<td>a</td>
</tr>
<tr>
<td>15</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>16</td>
<td>a</td>
<td>b</td>
<td>e</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>17</td>
<td>a</td>
<td>e</td>
<td>b</td>
<td>e</td>
<td>d</td>
</tr>
<tr>
<td>18</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>19</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>e</td>
<td>a</td>
</tr>
<tr>
<td>20</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>c</td>
</tr>
</tbody>
</table>