Quiz 1
Math 371, Introduction to Numerical Computing
Prepared by Dr. Kareem Elgindy
Date: 26-01-2019

Question 1. [1 mark] In high school, some students have been misled to believe that 22/7 is either the actual value of π or an acceptable approximation to it. Show that 355/113 is a better approximation in terms of both absolute and relative errors.

Question 2. [1 mark] Consider the functions $f(x) = \sqrt[3]{4x-1}$ and $g(x) = \sin x$.

i [1/2 mark] Find the linear Taylor polynomial of f about 4.25.

ii [1/2 mark] Find the error upper bound in approximating g by $x - x^3/6$.

Question 3. [2 marks] The Maclaurin series for $(1 + x)^n$ is also known as the binomial series. It states that

$$(1 + x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \ldots \quad \text{(valid for } |x| < 1.) \quad (1)$$

i [1/2 mark] Derive this series.

ii [1/2 mark] Give its particular form in summation notation (Σ) for $n = 1/2$.

iii [1/2 mark] Use the first four terms in the last form to compute $\sqrt{1.0001}$ rounded to five significant places.

iv [1/2 mark] Use Series (1) to obtain Maclaurin Series for $1/(1 - x)$.

Question 4. [2 marks] Consider the floating-point system $\mathbb{F}(10, 4, -100, 100)$.

i [1/2 mark] Determine the machine representation for the following numbers:
(a) 10^{-30}. (b) 64.015625. (c) -8×10^{-51}. (d) -8×100^{-51}.

ii [1/2 mark] Which of these are machine numbers?
(a) 10^{103}. (b) 2×10^{-32}. (c) $\frac{1}{5}$. (d) $-\frac{1}{7}$.

iii [1/2 mark] What are the machine numbers immediately to the right and left of 10^5? Also, in the case of machine underflow, what is the relative error involved in replacing a nonzero number x by zero?

iv [1/2 mark] Determine the chopping value of the rational number 335/113.