Exercise 1. (10-5 points)
Let V be an n-dimensional vector space over a field K with a scalar product (\cdot).
(1) Prove that V has an orthonormal basis.
(2) Set $V = \mathbb{C}^2$ as a vector space over \mathbb{C} with the product scalar defined by:

$$(u|v) = x_1y_1 - i x_2 y_1 - i x_1 y_2 - 2 x_2 y_2, \ u = (x_1, x_2) \text{ and } v = (y_1, y_2).$$

Find an orthonormal basis of V.

Exercise 2. (5-5-5-5 points)

Let V be an n-dimensional vector space over a field K with a non-degenerate scalar product (\cdot, \cdot), and V^* its dual space.

1. Prove that $\dim V = \dim V^*$.

2. Prove that for any linear functional $T \in V^*$, there is a unique $w \in V$ such that $Tv = (v|w)$ for every $v \in V$.

3. Set $V = \mathbb{R}^3$ with the standard scalar product, and let $B = \{v_1 = (1,1,0), v_2 = (1,0,1), v_3 = (0,1,1)\}$ and B^* its dual basis. Express $v_i^*(x, y, z)$ for each $i = 1, 2, 3$.

4. Let $T : \mathbb{R}^3 \rightarrow \mathbb{R}$ defined by $T(x, y, z) = 3x + 5y - z$. Find $w \in \mathbb{R}^3$ such that $Tv = (v|w)$ for every $v \in \mathbb{R}^3$.
Exercise 3. (5-5)

(1) Find the bilinear form associated to the quadratic form $q(x, y, z) = x^2 + 2xy + 2xz$.

(2) Find the quadratic form associated to the bilinear form:

$f(X, Y) = x_1y_1 + x_1y_2 + x_1y_3 + x_2y_1 + x_2y_3 + x_3y_1$.
Exercise 4. (8-7 points)

Let $V = \mathbb{R}^3$ with the scalar product defined by:

$$(X|Y) = x_1y_1 + x_1y_2 + x_2y_1 + x_2y_3 + x_3y_2.$$

(1) Find an orthogonal basis of V with respect to the defined scalar product.

(2) Find the index of positivity.
Exercise 5. (5-10)
Let V be an n-dimensional vector space over \mathbb{R} with a non-degenerate scalar product (\cdot).
Let u, v fixed vectors of V, and T the map defined by $Tw = (u|w)v$.

(1) Show that T is a linear operator on V.

(2) Find the transpose tT of T.

Exercise 6. (5-5-5)
Let V be an n-dimensional vector space over \mathbb{C} with a positive definite Hermitian product (\cdot). Let T be a linear operator on V such that $TT^* = T^*T$.

(1) Show that $(Tu|Tv) = (T^*u|T^*v)$ for every u, v in V.

(2) Let $B = \{v_1, \ldots, v_n\}$ be a basis of V and $L : V \to V$ defined by $L(v_i) = \sum_{j=i}^{n} c_{ij} v_j$. Find the matrix A representing L in the basis B ($A = [L]_B$).

(3) Show that if $L = L^*$, then A is diagonal.
Exercise 7. (5-5)
Let A be an $n \times n$ real unitary, upper triangular matrix.

(1) Prove that if $n = 3$, then A is a diagonal matrix.

(2) Is this true for all positive integers n? Justify.