Exercise 1 (7 points)
Let \((u_n)\) be sequence of real numbers. Define the sequence \((v_n)\) by

\[v_n = \frac{u_1 + u_2 + \ldots + u_n}{n} \]

1. (5 points) Show that if the sequence \((u_n)\) is convergent and \(\lim(u_n) = l\), then \((v_n)\) is convergent and \(\lim(v_n) = l\).

2. (2 points) Find a sequence \((u_n)\) such that \((v_n)\) is convergent and \((u_n)\) is divergent.
Exercise 2 (7 points)

Let \((u_n)\) be a sequence of real numbers defined by \(u_0 = \frac{3}{2}\) and \(u_{n+1} = (u_n - 1)^2 + 1\)

1. (2 pts) Prove that for each \(n \in \mathbb{N}\), \(1 < u_n < 2\)

2. (2 pts) Prove that the sequence \((u_n)\) is strictly monotone.

3. (3 pts) Deduce that \((u_n)\) is convergent and compute its limit.
Exercise 3 (7 points)
Let \((u_n) \) be a bounded sequence of real numbers. Let us define
\[v_n = \sup \{ u_k; k \geq n \} \quad \text{and} \quad w_n = \inf \{ u_k; k \geq n \} \]

1. (2 pts) Show that the sequence \((v_n) \) is decreasing and \((w_n) \) is increasing.

2. (2 pts) Deduce that \((v_n) \) and \((w_n) \) are convergent sequences.

3. (3 pts) Prove that the sequence \((u_n) \) is convergent if and only if \(\lim (v_n) = \lim (w_n) \).
Exercise 4 (7 points)
Let a and b two real numbers such that $a < b$ and $f : [a, b] \rightarrow [a, b]$.

1. (4 pts) Suppose that for every x, y in $[a, b] : |f(x) - f(y)| \leq |x - y|$. Show that f is continuous. Deduce that there exists $x_0 \in [a, b]$ such that $f(x_0) = x_0$.

2. (3 pts) Suppose that for every x, y such that $x \neq y$ we have $|f(x) - f(y)| < |x - y|$, then there exists one and only one $x_0 \in [a, b]$ such that $f(x_0) = x_0$.

Exercise 5 (7 points)

Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be a continuous function such that for every \(x, y \) in \(\mathbb{R} \): \(f(x + y) = f(x) + f(y) \).

1. (1 pts) Compute \(f(0) \) and show that \(f(-x) = -f(x) \).

2. (2 pts) Prove that for every \(x \in \mathbb{R} \) and \(n \in \mathbb{Z} \): \(f(nx) = nf(x) \).

3. (2 pts) Prove that for every \(x \in \mathbb{R} \) and \(q \) rational: \(f(qx) = qf(x) \).

4. (2 pts) Prove that for every \(x \in \mathbb{R} \) and \(\lambda \) real: \(f(\lambda x) = \lambda f(x) \).
Exercise 1: We have \(\forall a \in A: a \leq \sup(A) \) and \(\forall b \in B: b \leq \sup(B) \)

\[
\Rightarrow a + b \leq \sup(A) + \sup(B), \quad \forall a, b.
\]

Then \(\sup(A) + \sup(B) \) is an upper bound of \(A + B \).

Since \(\sup(A + B) \) is the smallest upper bound of \(A + B \) then:

\[
\sup(A + B) \leq \sup(A) + \sup(B). \quad (1) \quad (1.5 \text{pt})
\]

Conversely, \(\sup(A + B) \) is an upper bound of \(A + B \) then \(\forall a, b: a + b \leq \sup(A + B) \)

\[
\Rightarrow a \leq \sup(A + B) - b, \quad \forall a, b.
\]

Then \(\sup(A + B) - b \) is an upper bound of \(A \)

\[
\Rightarrow \sup(A) \leq \sup(A + B) - b, \quad \forall b \in B.
\]

\[
\Rightarrow b \leq \sup(A + B) - \sup(A), \quad \forall b \in B.
\]

\[
\Rightarrow \sup(A + B) - \sup(A) \text{ is an upper bound of } B
\]

\[
\Rightarrow \sup(B) \leq \sup(A + B) - \sup(A)
\]

\[\Leftrightarrow \quad \sup(A) + \sup(B) \leq \sup(A + B). \quad (2) \quad (1.5 \text{pt}) \]

(1) and (2) \(\Rightarrow \quad \sup(A) + \sup(B) = \sup(A + B) \).
20/ It is clear that \((u_{2k}) = (2^{2k}) \) is an increasing and unbounded. \(\Rightarrow \) \(\lim (u_{2k}) = +\infty \) \(\Rightarrow \) A has no supremum. \(\boxed{15 \text{ pt}} \)

\((u_{2k+1}) \) is \((2^{2k+1}) \), this sequence has positive terms and \(\lim (u_{2k+1}) = 0 \), then \(\inf (A) = 0 \). \(\boxed{15 \text{ pt}} \)

Exercise 2.1: \(u_0 = \frac{3}{2} \), then \(1 < u_0 < 2 \), the property is true = prove \(n = 0 \).

Suppose that \(1 < u_n < 2 \), let us show that \(1 < u_{n+1} < 2 \).

\(1 < u_n < 2 \) \(\Rightarrow \) \(0 < u_{n-1} < 1 \) \(\Rightarrow \) \(0 < (u_{n-1})^2 < 1 \),

\(\Rightarrow \) \(1 < (u_{n-1})^2 + 1 < 2 \) \(\Rightarrow \) \(1 < u_{n+1} < 2 \).

2. Let \(n \in \mathbb{N} \), \(u_{n+1} - u_n = (u_{n-1})^2 + 1 - u_n \)

\(= u_n^2 - 3u_n + 2 \)

\(= (u_n - 2)(u_n - 1) < 0 \)

because \(u_n < 2 \),

\(\Rightarrow \) \(u_{n+1} < u_n \) \(\Rightarrow \) \((u_n) \) is strictly decreasing.

3. \((u_n) \) is monotone and bounded \(\Rightarrow \) \((u_n) \) is convergent.

let \(\lambda = \lim (u_n) = \lim (u_{n+1}) \) \(\Rightarrow \lambda = \lambda - 1 \)

\(\boxed{3 \text{ pt}} \), \(\Rightarrow \boxed{\lambda = 1} \).
Ex. 8.

All \((a_n)\) is decreasing because the sequences of

\[A_n = \{ a_k \mid k \geq n \} \]

is decreasing.

- Idea: for \((a_n)\).

21/ \((v_n)\) is bounded, then \((v_n)\) and \((w_n)\) are bounded. Then \((w_n)\) and \((v_n)\) are bounded and monotone, then they are convergent.

31/ It is clear that \(\forall n \in \mathbb{N}\),

\[w_m \leq u_n \leq v_m. \]

If \(\lim (v_n) = \lim (w_m)\), then by squeeze \(w_m\)
\((v_n)\) is convergent and \(\lim (v_n) = \lim (w_m)\). Suppose that \((v_n)\) is convergent. and \(\lim (v_n) = l\).

By definition of \(\sup (u_k; k \geq m)\),

\[\forall \epsilon > 0; \exists N \in \mathbb{N}; \forall m \geq N; \quad |u_m - l| < \epsilon \]

\[\forall m \geq N; \quad m \geq N, \forall k \geq m; \quad l - \epsilon < u_k < l + \epsilon. \]

\[\forall k / \forall \eta > m \] is bounded from below by \(l - \epsilon\)
and bounded above by \(l + \epsilon\). Then:

\[l - \epsilon < w_m \leq v_m < l + \epsilon. \]

\[\Rightarrow (w_n) \) and \((v_n)\) converge to \(l.\)
Exercise 4: \(f: [a,b] \rightarrow [a,b] \), \(x_0 \in [a,b] \).

Let \(\varepsilon > 0 \); \(\exists \delta > 0 \): \(\left| x - x_0 \right| < \delta \Rightarrow \left| f(x) - f(x_0) \right| < \varepsilon \).

We know that \(\left| f(x) - f(x_0) \right| \leq \left| x - x_0 \right| . \leq \varepsilon \)

if \(\left| x - x_0 \right| < \varepsilon \).

Then \(\delta = \varepsilon \).

\(:= \) \(f \) is continuous at \(x_0 \) (for all \(x_0 \in [a,b] \)).

Consider \(g(x) = f(x) - x \).

We know that \(f(x) \in [a,b] \), then \(f(a) \geq a \)

\(\Rightarrow \) \(g(a) \geq 0 \).

\(f(b) \in [a,b] \Rightarrow f(b) \leq b \Rightarrow f(b) - b \leq 0 \)

\(\Rightarrow \) \(g(b) = 0 \).

Apply the intermediate value theorem to find \(c \in [a,b] \)

such that : \(g(c) = 0 \Rightarrow f(c) = c \).

\(\Rightarrow \) If \(\left| f(x) - f(y) \right| < \left| x - y \right| \Rightarrow \left| f(x) - f(y) \right| < \left| x - y \right| \)

apply the result of question 1 to deduce existence

of \(c \in [a,b] \): \(f(c) = c \).

Let us prove that this element \(c \) is unique.

Suppose there exist \(x_1 \) and \(x_2 \in [a,b] \):

\(f(x_1) = x_1 \) and \(f(x_2) = x_2 \).
We have \(|f(x) - f(y)| < |x - y| \)
but we have \(|f(x) - f(y)| = |x - y| \)

\[\implies |x - y| < |x - y| \,
\]
which is a contradiction.

Exercise 5: Let \(f : \mathbb{R} \to \mathbb{R} \) be \(f(x+y) = f(x) + f(y) \).

1. \(f(0) = f(0+0) = f(0) + f(0) \implies f(0) = 0 \)

2. \(f(nx) = f(x+x+\ldots+x) = f(x)+\ldots+f(x) \)
by induction \(\implies f(nx) = nf(x) \).

Suppose true for \(n = \tau (n+1) \).

In fact even if \(\tau \in \mathbb{Z} \) is negative, we have \(f(-x) = -f(x) \).

Suppose \(\tau \) is negative; \(\tau = -(m) \).

\[f(-nx) = f(-((-m)x)) = -f((m)x) = -(-m)f(x) = mf(x) \]

3. \(\text{Let } \frac{p}{q} \in \mathbb{Q} \quad (p, q) \in \mathbb{Z} \times \mathbb{Z} \)

\[f(x) = f(q \cdot (\frac{1}{q}x)) = q \cdot f(\frac{1}{q}x) \]

\[\implies f(\frac{p}{q}x) = \frac{1}{q} f(\frac{1}{q}x) \]

Thus \(f(\frac{p}{q}x) = f(\frac{p}{q} \cdot \frac{1}{q}x) = \frac{p}{q} f(\frac{1}{q}x) \)
4. Take \(\lambda \in \mathbb{R} \), \(f(q_n) \subseteq \mathbb{Q} \) s.t.:

\[
\lim_{n \to \infty} q_n = \lambda,
\]

\[
f(x) = f\left(\lim_{n \to \infty} q_n x\right) = \lim_{n \to \infty} f(q_n x) \quad (f \text{ is continuous}),
\]

\[
= \lim_{n \to \infty} q_n \cdot f(q_n) = \lambda \cdot f(\mu).
\]